⊥AB tại E và CF⊥AD tại F
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Ta chứng minh

 

Tương tự câu a ta chứng minh được  

Þ AD.AF =AK.AC (2)

 Từ (1) ta có AB.AE = AC.AH (3)

Lấy (3) + (2) ta được AD.AF + AB.AE = AC2 (ĐPCM)

Giải thích nữa nhéCâu 1:Cho hbh ABCD có AC>BD, kẻ CE⊥AB tại E, kẻ CF⊥AD tại F. Đẳng thức nào sau đây đúng?A. AB.AE+AD.AF=AC2                                           B. AB.AE+AD.AF=BD2C. AB.AE+AD.AF=AB2                                      A. AB.AE+AD.AF=AD2Câu 2:Cho htc ABCD có đáy lớn CD, AD=AB, DB=6cm, \(\widehat{C}=60^o\).Kẻ AH⊥DC (H∈DC), AH cắt DB tại I. Độ dài AI là:A. 2cm           ...
Đọc tiếp

Giải thích nữa nhé

Câu 1:

Cho hbh ABCD có AC>BD, kẻ CE⊥AB tại E, kẻ CF⊥AD tại F. Đẳng thức nào sau đây đúng?

A. AB.AE+AD.AF=AC2                                           B. AB.AE+AD.AF=BD2

C. AB.AE+AD.AF=AB                                     A. AB.AE+AD.AF=AD2

Câu 2:

Cho htc ABCD có đáy lớn CD, AD=AB, DB=6cm, \(\widehat{C}=60^o\).Kẻ AH⊥DC (H∈DC), AH cắt DB tại I. Độ dài AI là:

A. 2cm              B. 3cm                 C. 4cm                  D.5cm

Câu 3: Cho tam giác ABC vuông tại A, M là trung điểm BC. Đẳng thức nào sau đây đúng:

A. \(tan\widehat{MAC}=tan\widehat{B}\)                           B. \(tan\widehat{MAC}=cot\widehat{B}\)

C. \(tan\widehat{MAC}=cot\widehat{C}\)                            D. \(Sin^2\widehat{MAC}+cos^2\widehat{BAM}=\dfrac{AB^2}{BC^2}\)

Câu 4:

Cho ΔABC vuông tại A, (AB<AC). Trên cạnh AC lấy M sao cho \(2\widehat{ABM}+\widehat{MBC}=90^o\). Trên BC lấy D sao cho BD=BM. Khi đó:

A. \(\dfrac{1}{BD^2}+\dfrac{1}{BC^2}=\dfrac{1}{AB^2}\)                        B. \(\dfrac{1}{BD^2}+\dfrac{1}{BC^2}=\dfrac{2}{AB^2}\)

C. \(\dfrac{1}{BD^2}+\dfrac{1}{BC^2}=\dfrac{4}{3AB^2}\)                      D. \(\dfrac{1}{BD^2}+\dfrac{1}{BC^2}=\dfrac{1}{AC^2}\)

 

4
6 tháng 11 2021

Câu 1:

Kẻ BH⊥AC và DK⊥AC

Dễ thấy \(\Delta AHB\sim\Delta AEC;\Delta AKD\sim\Delta AFC\)

Do đó \(\dfrac{AB}{AC}=\dfrac{AH}{AE};\dfrac{AD}{AC}=\dfrac{AK}{AF}\Leftrightarrow AB\cdot AE=AC\cdot AH;AD\cdot AF=AC\cdot AK\)

\(\Leftrightarrow AB\cdot AE+AD\cdot AF=AC\left(AH+AK\right)=AC^2\left(A\right)\)

6 tháng 11 2021

Câu 2:

ABCD là htc nên \(AD=BC=AB\)

Ta có \(AD=AB=BC=\dfrac{BD}{\tan C}=\dfrac{6}{\sqrt{3}}=2\sqrt{3}\left(cm\right)\)

\(AH=AD\cdot\sin D=AD\cdot\sin C=2\sqrt{3}\cdot\sin60^0=3\left(cm\right)\)

\(DH=AD\cdot\cos D=\sqrt{3}\left(cm\right)\)

Áp dụng Talet: \(\dfrac{AI}{IH}=\dfrac{DH}{AB}=\dfrac{\sqrt{3}}{2\sqrt{3}}=\dfrac{1}{2}\Leftrightarrow AI=2IH\)

Mà \(AI+IH=AH=3\Leftrightarrow3IH=3\Leftrightarrow IH=1\Leftrightarrow AI=2\left(cm\right)\left(A\right)\)

12 tháng 2 2016

vẽ hình rồi làm, mình ko vẽ được

tich ủng hộ nha

15 tháng 2 2020

Q P E A B C D

a)  ta có ap//bc nên ae/ec=ep/eb

ta có ab//cq nên ae/ec=be/eq

vậy ep/eb=be/eq nên eb^2=ep.eq

b)  ta có ab//cq nên ab/cq=ae/ec

 ap//bc nên ap/bc=ae/ec

nên ab/cq=ap/bc

vậy ap.cq=ab.bc ko đổi

làm cho những người sau có thể bt mà xem 

 
 
 
 
 

Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR 

\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào