K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

-Qua A vẽ đường thẳng Ax song song với CK , từ C vẽ đường thẳng vuông góc AE tại H , trên tia đối tia HA lấy điểm E sao cho HA=HE= \(\dfrac{AE}{2}\). Nối BE

- CM \(\Delta\)ACE cân tại C \(\Rightarrow\) CA=CE=b

- Áp dụng pytago vào \(\Delta\)ABE \(\Rightarrow\) (2hc)2+c2 =(BE)2 \(\le\) (a+b)2 ( dấu = xảy ra khi B,C,E thẳng hàng ) \(\Rightarrow\) (2hc)2 \(\le\) (a+b)2 -c2 (1)

tương tự (2hb)2 =..............(2), (2ha)2 = .........(3)

Cộng vế theo vế (1)(2)(3) ta đc ......đpcm

10 tháng 11 2018

bahj ơi hình vẽ hơi xấu đấyoe

8 tháng 9 2017

Ta có:

\(S=pr=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(\Leftrightarrow p^2r^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right)\)

\(\Leftrightarrow r^2=\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}\)

\(\Leftrightarrow\dfrac{1}{r^2}=\dfrac{p}{\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\dfrac{1}{\left(p-a\right)\left(p-b\right)}+\dfrac{1}{\left(p-b\right)\left(p-c\right)}+\dfrac{1}{\left(p-c\right)\left(p-a\right)}\)

\(\Leftrightarrow\dfrac{1}{r^2}=4\left(\dfrac{1}{\left(b+c-a\right)\left(c+a-b\right)}+\dfrac{1}{\left(c+a-b\right)\left(a+b-c\right)}+\dfrac{1}{\left(a+b-c\right)\left(b+c-a\right)}\right)\)

\(\Leftrightarrow\dfrac{1}{4r^2}=\dfrac{1}{c^2-\left(a-b\right)^2}+\dfrac{1}{a^2-\left(b-c\right)^2}+\dfrac{1}{b^2-\left(c-a\right)^2}\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

\(\Leftrightarrow\dfrac{1}{r^2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}\ge4\left(1\right)\)

Ta lại có:

\(S=\dfrac{ah_a}{2}=pr=\dfrac{r\left(a+b+c\right)}{2}\)

\(\Leftrightarrow h_a=\dfrac{r\left(a+b+c\right)}{a}\)

\(\Leftrightarrow h_a^2=\dfrac{r^2\left(a+b+c\right)^2}{a^2}\left(2\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}h_b^2=\dfrac{r^2\left(a+b+c\right)^2}{b^2}\left(3\right)\\h_c^2=\dfrac{r^2\left(a+b+c\right)^2}{c^2}\left(4\right)\end{matrix}\right.\)

Từ (2), (3), (4) ta có:

\(h_a^2+h_b^2+h_c^2=r^2\left(a+b+c\right)^2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}=\dfrac{1}{r^2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}\ge4\)

8 tháng 9 2017

A B C B' (d) a b c c ha

Kẽ đường thẳng (d) đi qua A và // với BC. Gọi B' đối xứng với B qua (d).

Ta có:

\(BB'^2=B'C^2-BC^2\le\left(AB'+AC\right)^2-BC^2\)

\(\Leftrightarrow4h_a^2\le\left(b+c\right)^2-a^2\left(1\right)\)

Tương tự ta cũng có:

\(\left\{{}\begin{matrix}4h_b^2\le\left(c+a\right)^2-b^2\left(2\right)\\4h_c^2\le\left(a+b\right)^2-c^2\left(3\right)\end{matrix}\right.\)

Cộng (1), (2), (3) vế theo vế ta được

\(4h_a^2+4h_b^2+4h_c^2\le\left(a+b\right)^2-c^2+\left(b+c\right)^2-a^2+\left(c+a\right)^2-b^2\)

\(\Leftrightarrow4\left(h_a^2+h_b^2+h_c^2\right)\le\left(a+b+c\right)^2\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}\ge4\)

27 tháng 3 2016

Đăng lâu nhỉ

1 tháng 1 2016

xin lỗi em đây mới học lớp 6 vô chtt nhé

15 tháng 4 2016

@Anh: Tử số cũng biến thiên theo ha, hb, hc ...Suy luận được như trên chỉ khi Tử số là một số A không đổi. 

=======================================... 
Gọi S là diện tích tam giác, r là bánh kính đường tròn nội tiếp 

Ta có 

ha=2S/a =r(a+b+c)/a 

=> ha^2 + hb^2 + hc^2 = r^2(a+b+c)^2 * (1/a^2+1/b^2+1/c^2)} 

=> T = (a+b+c)^2/(ha^2+hb^2+hc^2) = 

=1/r^2/(1/a^2+1/b^2+1/c^2) 

Ta c/m (1/a^2+1/b^2+1/c^2) <=1/4r^2 (*) 

=> T<=1/4 

=> Max(T) = 1/4 Khi tam giác đều 

====================== 
c/m bất đẳng thức (*) 

S = pr 

S= √p(p-a)(p-b)(p-c) 

=> pr= √p(p-a)(p-b)(p-c) 

=> (pr^2) = (p-a)(p-b)(p-c) 

=> 1/r^2 = p/(p-a)(p-b)(p-c) = 1/((p-a)(p-b) + 1/(p-b)(p-c) + 1/(p-a)(p-c) 

=> 1/4r^2 = 1/[a^2 - (b-c)^2] + 1/[b^2 - (a-c)^2] + 1/[c^2 - (b-a)^2] >= 1/a^2 + 1/b^2 + 1/c^2 

=> 1/4r^2>= 1/a^2 + 1/b^2 + 1/c^2 

=> (1/r^2)/ 1/a^2 + 1/b^2 + 1/c^2 >= 1/4

Đúng nha Trần Thị Kiều Linh

3 tháng 4 2016

2/3ma +2/3mb >c  ( Bất đẳng thức tam giác)

2/3ma+ 2/3c>  b

 2/3mb +2/3mc > a

=> 4/3 ( ma +mb + mc) > a+b+c