\(x^2+px +1=0\)

gọi c,d là 2 nghiệm của pt: 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

\(a^2=-ap-1;b^2=-bp-1;ab=1;cd=1;c+d=-q;\)\(VT=\left(a^2-a\left(c+d\right)+cd\right)\left(b^2-b\left(c+d\right)+cd\right)=\left(-ap-1+aq+1\right)\left(-bp-1+bq+1\right)=ab\left(p-q\right)^2=\left(p-q\right)^2\)

 

7 tháng 1 2016

Làm thì làm được nhưng rất dài

Bạn chỉ cần tính theo hệ thức Vi-ét

4 tháng 5 2017

\(\Delta=\)(m+1)\(^2\)- 1.(m-4) =\(m^2+2m+1\)\(-m+4\)=m\(^2\)+m+5>0 với mọi m

Gọi \(x_1,x_2\)là nghiệm của phương trình (1)

theo hệ thức Vi-ét ta có \(x_1+x_2=2\left(m+1\right)\);\(x_1.x_2=\)m-4

B=\(x_1\left(1-x_2\right)+x_2\left(1-x_1\right)=x_1-x_1x_2+x_2-x_1x_2=2\left(m+1\right)-2.\left(m-4\right)=2m-2m+2+8=10\)

=> B không phụ thuộc vào m

4 tháng 5 2017

không có gì

31 tháng 1 2016

Theo ht Viet :

\(\int^{x1+x2=\frac{\sqrt{85}}{4}}_{x1x2=\frac{21}{16}}\)

Xét \(x1^3-x2^3=\left(x1-x2\right)^3-3x1x2\left(x1-x2\right)\) (1) 

(+) tính x1  - x2 

TA có \(\left(x1-x2\right)^2=x1^2-2x1x2+x2^2=\left(x1+x2\right)^2-4x1x2=\left(\frac{\sqrt{85}}{4}\right)^2-4\left(\frac{21}{16}\right)\)

Rút gọn => x1 - x2 sau đó thay vào (1) 

31 tháng 1 2016

b) Xét a = 0 pt <=> x - 2 = 0 => x = 2 ( TM ) 

Xét a khác 0 pt là pt bậc 2 

\(\Delta=\left(2a-1\right)^2-4a\left(a-2\right)=4a^2-4a+1-4a^2+8a=4a+1\)

LẬp luận như bài lần trước ta có a = n(n+1) với n nguyên 

4 tháng 3 2020

2)

a)Thay m = 2 vào hệ, ta được :

HPT :\(\hept{\begin{cases}2x+4y=2+1\\x+\left(2+1\right)y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+4y=3\left(^∗\right)\\x+3y=2\left(^∗^∗\right)\end{cases}}\)

Lấy (*) trừ (**), ta được :
\(2x+4y-x-3y=3-2\)

\(\Leftrightarrow x+y=1\)(***)

Lấy (**) trừ (***), ta được :

\(\Leftrightarrow x+3y-x-y=2-1\)

\(\Leftrightarrow2y=1\)

\(\Leftrightarrow y=\frac{1}{2}\)

\(\Leftrightarrow x=1-\frac{1}{2}=\frac{1}{2}\)

Vậy với \(m=2\Leftrightarrow\left(x;y\right)\in\left\{\frac{1}{2};\frac{1}{2}\right\}\)

b) Thay \(\left(x;y\right)=\left(2;-1\right)\)vào hệ, ta được :

HPT :\(\hept{\begin{cases}2m-2m=m+1\\2-\left(m+1\right)=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m+1=0\\m+1=0\end{cases}}\)

\(\Leftrightarrow m=-1\)

Vậy với \(\left(x,y\right)=\left(2;-1\right)\Leftrightarrow m=-1\)

23 tháng 1 2016

(+) điều kiện đủ : giả sử ta có : \(kb^2=\left(k+1\right)^2ac\) (1)

g/s PT \(ax^2+bx+c=0\) luôn có hai nghiệm x1 ; x2 ; 

Theo hệ thức Viete ta có : \(\int^{x1x2=\frac{c}{a}}_{x1+x2=-\frac{b}{a}}\)

Từ (1) => \(\frac{kb^2}{a^2}=\frac{\left(k+1\right)^2c}{a}\Leftrightarrow k\left(-\frac{b}{a}\right)^2-\frac{\left(k+1\right)^2c}{a}=0\)

<=> \(k\left(x1+x2\right)-\left(k+1\right)^2x1x2\) = 0 

<=> \(k\left(x1+x2\right)-\left(k^2+2k+1\right)x1x2=0\)

 <=> \(kx1^2+2kx1x2+kx2^2-k^2x1x2-2kx1x2-x1x2=0\)

<=> \(kx1^2+kx2^2-k^2x1x2-x1x2\)

<=> \(kx1\left(x1-kx2\right)+x2\left(kx2-x1\right)=0\)

<=> \(\left(x1-kx2\right)\left(kx1-x2\right)=0\)

<=> x1 = kx2 hoặc x2 = kx1 

29 tháng 6 2017

1/ a/ \(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}\)

\(=\sqrt{\left(\sqrt{5}+1\right)^6}-\sqrt{\left(\sqrt{5}-1\right)^6}\)

\(=\left(\sqrt{5}+1\right)^3-\left(\sqrt{5}-1\right)^3\)

\(=32\)

b/ \(\sqrt{\left(3-2\sqrt{2}\right)\left(4-2\sqrt{3}\right)}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{2}-1\right)\left(\sqrt{3}-1\right)\)

\(=\sqrt{6}-\sqrt{2}-\sqrt{3}+1\)

29 tháng 6 2017

Câu 3/ \(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}\)

\(< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{4}}}}}=2\)

Ta lại có:

\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}>\sqrt{2}>1\)

\(\Rightarrow1< A< 2\)

Vậy \(A\notin N\)