Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=n(n+1)+1
Vì n(n+1) chia hết cho 2
nên A=n(n+1)+1 không chia hết cho 2
\(n^2+n+1=n\left(n+1\right)+1\)
vì n và n +1 là 2 số tự nhiên liên tiếp nên n(n+1) chia hết cho 2
=> A chia 2 dư 1 => A lẻ
a) Ta có : A = n2 + n + 1
= n(n + 1) + 1 (1)
Vì n(n+1) là tích 2 số tự nhiên liên tiếp
=> n(n + 1) \(\in\)2k (k\(\inℕ\))
=> n(n + 1) + 1 \(\in\)2k + 1 (k\(\inℕ\))
mà 2k + 1 không chia hết cho 2
=> 2k + 1 là số lể
=> n2 + n + 1 là số lẻ (đpcm)
b) Từ (1) ta có : A = n(n + 1) + 1
Mà n(n + 1) = ....0 = ...2 = ...6
=> n(n + 1) + 1 = ....1 = ...3 = ...7
Ta nhận thấy các chữ số tận cùng trên không chia hết cho 5
=> n(n + 1) + 1 không chia hết cho 5
=> A không chia hết cho 5 (đpcm)
a) n có 2 trường hợp
Với n = 2k +1 ( k thuộc Z)
=> (2k+1+6) . (2k+1+7)
= (2k + 7) .( 2k + 8)
= (2k + 7) . 2.(k+4) (chia hết cho 2) ( 1 )
Với n = 2k
=> (2k + 6) . ( 2k + 7)
= 2. (k+3) . ( 2k + 7) ( chia hết cho 2) (2 )
Từ 1 và 2
=> moi n thuoc Z thi
(n+6)x(n+7) chia het cho 2
a) + Nếu n lẻ thì n + 7 chẵn => n + 7 chia hết cho 2 => (n + 6).(n + 7) chia hết cho 2
+ Nếu n chẵn thì n + 6 chẵn => n + 6 chia hết cho 2=> (n + 6).(n + 7) chia hết cho 2
=> (n + 6).(n + 7) luôn chia hết cho 2
Nói ngặn gọn hơn là: Do (n + 6).(n + 7) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2
b) n2 + n + 3
= n.(n + 1) + 3
Vì n.(n + 1) là tích 2 số tự nhiên nên chia hết cho 2; 3 không chia hết cho 2
=> n2 + n + 3 không chia hết cho 2
Có 13 giao thừa = 1.2.3.4.5.6.7.8.9.10.11.12.13 chia hết cho 2
Có 11 giao thừa = 1.2.3.4.5.6.7.8.9.10.11 chia hết cho 2
suy ra 13 giao thừa - 11 giao thừa chia hết cho 2
xin các bạn k cho mình nhé
A chia hết cho 15 => A không chia hết cho 3 hoặc 5
*xét A không chia hết cho 5
A=n2+n+1=n.n+n+1=n(n+1)+1
n(n+1) chỉ có thể tận cùng = 2,6,0,
=>n(n+1)+1 chỉ có thể có tận cùng =3,7,1
mà số có tận cùng = 3,7,1 không chia hết cho 5 => A không chia hết cho 15
A=n(n+1)+1
n(n+1) h hai so tu nhien lien tiep la so chan ko bao gio co tan cung =4
=> A la so le ko co tan cung la 5 => ko chia het cho 5=> ko chia het cho 15
Mk nghĩ bn chép sai đề rùi, đề phải như này mới đúng
A = n2 + n + 1
A = n.(n + 1) + 1
a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp nên n.(n + 1) là số chẵn
=> A = n.(n + 1) + 1 là số lẻ, không chia hết cho 2
b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp nên n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5