K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

bo tay

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

Cho $n=1$ thì $(n+2)(n+9)=30$ không chia hết cho 49 cũng không chia hết cho 7. Bạn xem lại đề.

21 tháng 7 2019

\(n^2+n+1=n\left(n+1\right)+1\)

vì n và n +1 là 2 số tự nhiên liên tiếp nên n(n+1) chia hết cho 2 

=> A chia 2 dư 1 => A lẻ

21 tháng 7 2019

a) Ta có : A = n2 + n + 1

                   = n(n + 1) + 1 (1)

Vì n(n+1) là tích 2 số tự nhiên liên tiếp 

=> n(n + 1) \(\in\)2k (k\(\inℕ\))

=> n(n + 1) + 1 \(\in\)2k + 1 (k\(\inℕ\)

mà 2k + 1 không chia hết cho 2 

=> 2k + 1 là số lể 

=> n2 + n + 1 là số lẻ (đpcm)

b) Từ (1) ta có : A = n(n + 1) + 1

Mà n(n + 1) = ....0 = ...2 = ...6

=> n(n + 1) + 1 =  ....1 = ...3 = ...7

Ta nhận thấy các chữ số tận cùng trên không chia hết cho 5

=> n(n + 1) + 1 không chia hết cho 5

=> A không chia hết cho 5 (đpcm)

10 tháng 5 2022

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16 tháng 10 2015

a) 4n+6 là số chẵn => tích trên chẵn 

b) Giả sử : n là số chẵn => 8n+1 và 6n+5 đều là số lẻ => tích ko chia hết cho 2

Giả sử n là số lẻ =>8n+1 và 6n+5 đều là số lẻ => tích ko chia hết cho 2

Vậy biểu thức trên ko chia hết cho 2 với mọi n

21 tháng 7 2016

Mk nghĩ bn chép sai đề rùi, đề phải như này mới đúng 

A = n2 + n + 1

A = n.(n + 1) + 1

a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp nên n.(n + 1) là số chẵn

=> A = n.(n + 1) + 1 là số lẻ, không chia hết cho 2

b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp nên n.(n + 1) chỉ có thể tận cùng là 0; 2; 6

=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5