K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

M = 4/2.5 + 4/5.8 + 4/8.11 + 4/11.14 + 4/14.17 + 4/17.20

M= 4/3 . (1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17+1/17-1/20)

M= 4/3 . (1/2 - 1/20)

M= 4/3 . (10/20 - 1/20)

M= 4/3 . 9/20

M= 3/5

k nha

12 tháng 5 2016

S = 1/2.5 +1/5.8 +1/8.11+1/11.14+1/14.17+1/17.20

S=1/3.(1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17+1/17-1/20)

S=1/3.(1/2-1/20)

S=1/3.(10/20-1/20)

S=1/3.9/20

S= 3/20

k nha

26 tháng 4 2017

3/4 . M = 1/2.5 + 1/5.8 + 1/8.11 + 1/11.14 + 1/14.17 + 1/17.20

3/4 . M = 1/2 - 1/20

3/4 .M = 9/10

M = 9/10 : 3/4

M = 3/5

 Vậy M = 3/5

Nhớ tk m nha

28 tháng 3 2017

\(\frac{1}{3}.\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right]\)

\(\frac{1}{3}\left[\frac{1}{2}-\frac{1}{20}\right]=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}\)

mk đầu tiên đó

28 tháng 3 2017

=\(\frac{3}{20}=0,15\)

12 tháng 5 2017

A=...

<=>\(A=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{1}{17.20}\right)\)

<=>\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)

<=>\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)

<=>\(A=\frac{1}{6}-\frac{1}{60}< \frac{1}{6}< 1\)

12 tháng 5 2017

sai ùi 

3 tháng 4 2018

x.\(\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\right)=-1\frac{3}{5}\)

x.\(\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+\frac{17-14}{14.17}\right)=\frac{-8}{5}\)

x.\(\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\right)=\frac{-8}{5}\)

x.\(\left(\frac{1}{2}-\frac{1}{17}\right)=\frac{-8}{5}\)

x.\(\left(\frac{17}{34}-\frac{2}{34}\right)=\frac{-8}{5}\)

x.\(\frac{15}{34}=\frac{-8}{5}\)

x\(=\frac{-8}{5}:\frac{15}{34}\)

x\(=\frac{-8}{5}.\frac{34}{15}\)

x\(=\frac{-272}{75}\)

Vậy x\(=\frac{-272}{75}\)

27 tháng 3 2016

Cau a) 1/1.2 +1/2.3 +1/3.4+...+1/99.100= 1/1-1/2+1/2-1/3+...+1/99-1/100

              =1/1-1/100=99/100

              99/100<1 thì 1/1.2 +1/2.3+1/3.4+...+1/99.100<1

27 tháng 3 2016

Câu b): Ta có: 1/2^2<1/1.2

                      1/3^2<1/2.3

                       ...............(so sánh như vậy với các số khác)

                       1/2016^2<1/2015.2016

                       Áp dụng của câu a ta thêm vào sau về thành: 1/1.2+1/2.3+1/3.4+...+1/2015.2016

                       =1/1-1/2+1/2-1/3+1/3-1/4+...+1/2015-1/2016

                       =1/1-1/2016

                       =2015/2016<1

                       Ma :1/2^2+1/3^2+1/4^2+...+1/2016^2<1/1.1+1/2.3+1/3.4+...+1/2015.2016

                       Nen:1/1^2+1/3^2+1/4^2+...+1/2016^2<1

9 tháng 3 2018

a. \(A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+......+\dfrac{3}{17.20}\)

\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+......+\dfrac{1}{17}-\dfrac{1}{20}\)

\(=\dfrac{1}{2}-\dfrac{1}{20}\)

\(=\dfrac{9}{20}\)

b. \(B=\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)

\(=\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{4}-\dfrac{1}{10}\)

\(=\dfrac{3}{20}\)

c. \(C=\dfrac{4^2}{1.5}+\dfrac{4^2}{5.9}+......+\dfrac{4^2}{45.49}\)

\(=4\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+....+\dfrac{4}{45.49}\right)\)

\(=4\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+.....+\dfrac{1}{45}-\dfrac{1}{49}\right)\)

\(=4\left(1-\dfrac{1}{49}\right)\)

\(=4.\dfrac{48}{49}\)

\(=\dfrac{192}{49}\)