Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow12x+20y=x-2y\Leftrightarrow11x=-22y\Rightarrow\frac{x}{y}=-\frac{22}{11}=-2\)
1. Theo t/c của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x.y}{2.5}=\frac{90}{10}=9\)
\(\frac{x}{2}=9\Rightarrow x=9.2=18\)
\(\frac{y}{5}=9\Rightarrow y=9.5=45\)
Vậy x = 18 ; y = 45
Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1
c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1
=> A = 1+bc+b/bc+b+1 = 1
Tk mk nha
BÀI 1:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\) (thay abc = 1)
\(=\frac{a+ab+1}{a+ab+1}=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
suy ra: \(x=2k;\)\(y=3k;\)\(z=4k\)
Ta có: \(x^2+y^2+z^2=116\)
<=> \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)
<=> \(29k^2=116\)
<=> \(k^2=4\)
<=> \(k=\pm2\)
tự làm nốt
\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}=\)
\(\frac{3xz-2yz}{37z}=\frac{5yx-3zx}{15x}=\frac{2zy-5xy}{2y}=\frac{3xz-2yz+5yx-3zx+2zy-5xy}{37z+15x+2y}=0\)(t/c dãy tỉ số bằng nhau)
\(\frac{3x-2y}{37}=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
\(\frac{5y-3z}{15}=0\Rightarrow5y=3z\Rightarrow\frac{z}{5}=\frac{y}{3}\left(2\right)\)
\(\frac{2z-5x}{2}=0\Rightarrow2z=5x\Rightarrow\frac{x}{2}=\frac{z}{5}\left(3\right)\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{10x}{20}=\frac{3y}{9}=\frac{2z}{10}=\frac{10x-3y-2z}{20-9-10}=\frac{-4}{1}=-4\)
\(x=-8,y=-12,z=-20\)
\(\frac{3x+5y}{x-2y}=\frac{1}{4}\)
\(\Rightarrow\left(3x+5y\right).4=x-2y\)
\(\Leftrightarrow12x+20y=x-2y\)
\(\Leftrightarrow11x=-22y\)
\(\Leftrightarrow x=-2y\)
\(\Rightarrow\frac{x}{y}=-\frac{2}{1}\)
\(\frac{3x+5y}{x-2y}=\frac{1}{4}\)
\(\Rightarrow\left(3x+5y\right)4=x-2y\)
\(\Rightarrow12x+20y=x-2y\)
\(\Rightarrow12x-x=-2y-20y\)
\(\Rightarrow11x=-22y\)
\(\Rightarrow\frac{x}{y}=\frac{-22}{11}\)
\(\Rightarrow\frac{x}{y}=-2\)