Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có +
=
=
= a
Ta có: –
=
+
.
Trên tia CB, ta dựng =
=> –
=
+
=
Tam giác EAC vuông tại A và có : AC = a, CE = 2a , suy ra AE = a√3
Vậy =
= a√3
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng quy tắc 3 điểm đối với phép cộng vectơ:
=
+
=
+
=> +
=
+
+ (
+
)
ABCD là hình bình hành, hi vec tơ và
là hai vec tơ đối nhau nên:
+
=
Suy ra +
=
+
.
Mình có cách khác :
Áp dụng quy tắc 3 điểm đối với phép trừ vec tơ
=
–
=
–
=> +
= (
+
) – (
+
).
ABCD là hình bình hành nên và
là hai vec tơ đối nhau, cho ta:
+
=
Suy ra: +
=
+
.
![](https://rs.olm.vn/images/avt/0.png?1311)
Trước hết ta có
= 3
=>
= 3 (
+
)
=> = 3
+ 3
=> – = 3
=> =
mà =
–
nên
=
(
–
)
Theo quy tắc 3 điểm, ta có
=
+
=>
=
+
–
=> = –
+
hay
= –
+
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi G là giao điểm của AK, BM thì G là trọng tâm của tam giác.
Ta có =
=>
=
= –
= –
= –
Theo quy tắc 3 điểm đối với tổng vec tơ:
=
+
=>
=
–
=
(
–
).
AK là trung tuyến thuộc cạnh BC nên
+
= 2
=>
–
+
= 2
Từ đây ta có =
+
=>
= –
–
.
BM là trung tuyến thuộc đỉnh B nên
+
= 2
=> –
+
= 2
=> =
+
.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi D là trung điểm của cạnh AB, ta có:
+
= 2
Đẳng thức đã cho trở thành:
2+ 2
=
=> +
=
Đẳng thức này chứng tỏ M là trung điểm của CD
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta xét tổng:
+
+
+
+
+
=
=
(1)
Mặt khác, ta có ABIJ, BCPQ và CARS là các hình bình hành nên:
=
=
=
=> +
+
=
+
+
=
=
(2)
Từ (1) và (2) suy ra : +
+
=
(dpcm)
chúc chị làm được
Cho một đa giác đều 9 đỉnh A_1A_2 ... A_9Một1Một2... A9. Mỗi đỉnh của đa giác được tô màu đỏ hoặc xanh lam. Gọi F là tập hợp các tam giác tạo thành 9 đỉnh của đa giác đó. Chứng minh rằng trong F tồn tại hai tam giác đồng dạng và các đỉnh được tô cùng màu
- Em dịch được
- Nhưng không biết làm