K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2020

Bài 1.

a) Xét \(\Delta AIE\)\(\Delta BIC\) có:

\(IE=IB\)

\(\widehat{AIE}=\widehat{BIC}\left(đđ\right)\)

\(AI=IC\)

Vậy \(\Delta AIE\) $=$ \(\Delta BIC\) $(c.g.c)$

\(\Rightarrow AE=BC\)

b) \(\Delta AIE\) $=$ \(\Delta BIC\)

\(\Rightarrow\widehat{EAI}=\widehat{ICB}\)(so le trong)

\(\Rightarrow AE//BC\)

23 tháng 1 2020

Bài 2.

a) Xét \(\Delta AMB\)\(\Delta AMC\) có:

\(AB=AC\left(gt\right)\\MB=MC\left(gt\right)\\ AM:chung \)

Vậy \(\Delta AMB\) $=$\(\Delta AMC\) $(c.c.c)$

b) \(\Delta AMB\) $=$\(\Delta AMC\) (cmt) \(\Rightarrow\widehat{BAM}=\widehat{CAM}\)(2 góc tương ứng)

\(\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\) (do tia $AM$ nằm giữa 2 tia $AB$ và $AC$)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}=\)\(\dfrac{{\widehat {BAC}}}{2} \)

\(\Rightarrow\)$AM$ là tia phân giác của $\widehat{BAC}$

c)Vì \(\Delta AMB\) $=$\(\Delta AMC\) (cmt)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\left(cmt\right)\)

\(\widehat{AMB}+\widehat{AMC}=180^o\) (2 góc kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\)\(\dfrac{180^o}{2}=90^o\)

\(\Rightarrow AM\perp BC\)

d) Vẽ tia $Am$ sao cho $\widehat{CAm}$ là góc ngoài tại đỉnh A của \(\Delta ABC\)

\( \Rightarrow\) $\widehat{CAm}=\widehat{ABC}+\widehat{ACB} (1)$ (tính chất góc ngoài của tam giác)

$\Delta AMB = \Delta AMC (cmt)$

$\Rightarrow \widehat{ABM}=\widehat{ACM}$

$\Rightarrow \widehat{ABC}=\widehat{ACB}$ \(\left(M\in BC\right)\)$(2)$
Từ $(1)$ và $(2)$ suy ra:

$\Rightarrow \widehat{CAm}=\widehat{ACB}+\widehat{ACB}=2\widehat{ACB}$

Mà $\widehat{CAm} = 2\widehat{A_1}$ (do $At$ là tia phân giác của

$\widehat{CAm}$)

$\Rightarrow \widehat{ACB}=\widehat{A_1}$

$\Rightarrow At//BC$