K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2023

a: Ta có: ΔOCD cân tại O

mà OH là đường cao

nên H là trung điểm của CD

Xét tứ giác OCBD có

H là trung điểm chung của OB và CD

=>OCBD là hình bình hành

Hình bình hành OCBD có OC=OD

nên OCBD là hình thoi

b: Xét ΔOCM vuông tại C có CH là đường cao

nên \(OH\cdot OM=OC^2\)

=>\(OH\cdot OM=OC\cdot OC\)

c: Ta có: ΔOCD cân tại O

mà OM là đường cao

nên OM là phân giác của góc COD
Xét ΔCOM và ΔDOM có

OC=OD

\(\widehat{COM}=\widehat{DOM}\)

OM chung

Do đó: ΔCOM=ΔDOM

=>\(\widehat{OCM}=\widehat{ODM}\)

mà \(\widehat{OCM}=90^0\)

nên \(\widehat{ODM}=90^0\)

=>DM\(\perp\)OD

Ta có: OCBD là hình thoi

=>OD//BC

Ta có: BC//OD

OD\(\perp\)DM

Do đó; CB\(\perp\)DM

Xét (I) có

ΔBEM nội tiếp

BM là đường kính

Do đó: ΔBEM vuông tại E

=>BE\(\perp\)EM tại E

=>BE\(\perp\)CM tại E

Xét ΔCDM có

CB,MH là các đường cao

CB cắt MH tại B

Do đó: B là trực tâm của ΔCDM

=>DB\(\perp\)CM

mà BE\(\perp\)CM

và DB,BE có điểm chung là B

nên D,B,E thẳng hàng

OCBD là hình thoi

=>BC=BD

=>ΔBCD cân tại B

=>\(\widehat{BCD}=\widehat{BDC}\)

Ta có: OCBD là hình thoi

=>BO là phân giác của góc CBD

=>\(\widehat{CBO}=\widehat{DBO}\)

Ta có: IB=IE

=>ΔIBE cân tại I

=>\(\widehat{IBE}=\widehat{IEB}\)

mà \(\widehat{IBE}=\widehat{HBD}\)(hai góc đối đỉnh)

nên \(\widehat{IEB}=\widehat{HBD}\)

=>\(\widehat{IEB}=\widehat{CBO}\)

Xét tứ giác CHBE có \(\widehat{CHB}+\widehat{CEB}=90^0+90^0=180^0\)

nên CHBE là tứ giác nội tiếp

=>\(\widehat{HCB}=\widehat{HEB}\)

Ta có: \(\widehat{IEH}=\widehat{IEB}+\widehat{HEB}\)

\(=\widehat{HCB}+\widehat{CBH}=90^0\)

=>HE là tiếp tuyến của (I)