Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I don't now
...............
.................
a) ta có: n -6 chia hết cho n - 2
=> n - 2 - 4 chia hết cho n - 2
mà n - 2 chia hết cho n - 2
=> 4 chia hết cho n - 2
=> n - 2 thuộc Ư(4)={1;-1;2;-2;4;-4}
...
rùi bn tự xét giá trị để tìm n nha
câu b;c ;ebn làm tương tự như câu a nha
d) ta có: 3n -1 chia hết cho 11 - 2n
=> 2.(3n-1) chia hết cho 11 - 2n
6n - 2 chia hết cho 11 - 2n
=> -2 + 6n chia hết cho 11 - 2n
=> 31 - 33 + 6n chia hết cho 11 - 2n
=> 31 - 3.(11-2n) chia hết cho 11 - 2n
mà 3.(11-2n) chia hết cho 11 - 2n
=> 31 chia hết cho 11 - 2n
=> 11 - 2n thuộc Ư(31)={1;-1;31;-31)
...
hơi dài đấy 3
a,
2n+1\(⋮\)2n-3
2n-3+4\(⋮\)2n-3
\(_{\Rightarrow}\)4\(⋮\)2n-3
2n-3\(\in\)Ư(4)=(1;4;2;-1;-4;-2)
2n-3 | 1 | 2 | 4 | -1 | -2 | -4 |
2n | 4 | 5 | 7 | 2 | 1 | -1 |
n | 2 | 1 |
vậy n\(\in\)(2;1)
b;
3n+2\(⋮\)3n-4
3n-4+6\(⋮\)3n-4
=>6\(⋮\)3n-4
3n-4\(\in\)Ư(6)=(1;2;3;6;-1;-2;-3;-6)
3n-4 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
3n | 5 | 6 | 7 | 10 | 3 | 2 | 1 | -2 |
n | 3 | 5 | 1 | -1 |
vậy n\(\in\)(3;5;-1;1)
\(6n+5=2\left(3n-1\right)+7\)
\(2\left(3n-1\right)\)chia hết cho \(3n-1\)nên 7 chia hết cho \(3n-1\)
Do đó \(3n-1\)nhận các giá trị \(7;1;-1;-7\)
Do đó n nhận các giá trị \(\frac{8}{3};\frac{2}{3};0;-2\)
Vì \(n\in N\)nên chỉ nhận giá trị là 0
Vậy \(n=0\)
3n + 1 chia hết cho n - 1
3n - 3 + 4 chia hết cho n - 1
3.(n - 1) + 4 chia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 thuộc Ư(4) = {1 ; -1 ; 4 ; -4}
=> n = {2 ; 0 ; 5 ; -3}
a,b có người làm rồi nhé
c)\(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\in Z\)
=>5 chia hết n-1
=>n-1 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {2;0;6;-4}
Ta có : n2 - 9n + 7 = n.n - 9n + 7 = n ( n - 9 ) + 7
Để n2 - 9n + 7 \(⋮\)n - 9
=> n ( n - 9 ) + 7 \(⋮\)n - 9
=> 7 \(⋮\)n - 9
=> n - 9 \(\in\)Ư( 7 ) = ( 1 ; 7 )
=> n \(\in\)( 10 ; 16 )
~ HỌC TỐT ~
a , Ta có : 4n - 5 chia hết cho n .
\(\Rightarrow\)n \(\in\)Ư (5) = { ± 1 ; ± 5 }
Vậy n \(\in\){ ± 1 ; ± 5 }
b , Ta có : - 11 chia hết cho n - 1
\(\Rightarrow\)n - 1 \(\in\)Ư (11) = { ± 1 ; ± 11 }
n - 1 | 1 | - 1 | 11 | - 11 |
n | 2 | 0 | 12 | - 10 |
Vậy n \(\in\) { 2 ; 0 ; 12 ; - 10 }
c , Ta có : 3n + 2 chia hết 2n - 1
\(\Rightarrow\)2 ( 3n + 2 ) chia hết 2n - 1
\(\Rightarrow\)6n + 4 chia hết 2n - 1
\(\Rightarrow\)3 ( 2n - 1 ) + 7 chia hết 2n - 1
\(\Rightarrow\)2n - 1 \(\in\)Ư (7) = { ± 1 ; ± 7 }
2n - 1 | 1 | - 1 | 7 | - 7 |
2n | 2 | 0 | 8 | - 6 |
n | 1 | 0 | 4 | - 3 |
Vậy n \(\in\){ 1 ; 0 ; 4 ; - 3 }
3n + 4 chia hết cho n - 1
3n - 3 + 3 + 4 chia hết cho n - 1
3.(n - 1) + 7 chia hết cho n - 1
Ta có :
n - 1 chia hết cho n - 1
3.(n - 1) chia hết cho n - 1
=> 7 chia hết cho n - 1
=> n -1 thuộc Ư(7) = {1 ; -1 ; 7 ; -7}
Ta có bảng sau:
3n + 4 \(⋮\)n - 1
=> (3n - 1) + 5 \(⋮\)n - 1
=> 5 \(⋮\)n - 1
=> n - 1 \(\in\)Ư(5) = {-5;-1;1;5}
=> n \(\in\){-4;0;2;6}