Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hơi dài đấy 3
a,
2n+1\(⋮\)2n-3
2n-3+4\(⋮\)2n-3
\(_{\Rightarrow}\)4\(⋮\)2n-3
2n-3\(\in\)Ư(4)=(1;4;2;-1;-4;-2)
2n-3 | 1 | 2 | 4 | -1 | -2 | -4 |
2n | 4 | 5 | 7 | 2 | 1 | -1 |
n | 2 | 1 |
vậy n\(\in\)(2;1)
b;
3n+2\(⋮\)3n-4
3n-4+6\(⋮\)3n-4
=>6\(⋮\)3n-4
3n-4\(\in\)Ư(6)=(1;2;3;6;-1;-2;-3;-6)
3n-4 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
3n | 5 | 6 | 7 | 10 | 3 | 2 | 1 | -2 |
n | 3 | 5 | 1 | -1 |
vậy n\(\in\)(3;5;-1;1)
a,b có người làm rồi nhé
c)\(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\in Z\)
=>5 chia hết n-1
=>n-1 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {2;0;6;-4}
\(a,3n+2⋮n-1\Rightarrow\frac{3n+2}{n-1}\inℤ\Rightarrow\frac{3n-3+5}{n-1}\inℤ\)
\(\Rightarrow\frac{3n-3}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow3+\frac{5}{n-1}\inℤ\)
\(3\inℤ\Rightarrow\frac{5}{n-1}\inℤ\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1,\pm5\right\}\)
Ta có bảng sau:
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
\(b,3n-8⋮n-4\Rightarrow\frac{3n-8}{n-4}\inℤ\Rightarrow\frac{3n-12+4}{n-4}\inℤ\)
\(\Rightarrow\frac{3n-12}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow\frac{3\left(n-4\right)}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow3+\frac{4}{n-4}\inℤ\)
\(3\inℤ\Rightarrow\frac{4}{n-4}\inℤ\Rightarrow n-4\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)
Ta có bảng sau:
n - 4 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 5 | 3 | 6 | 2 | 8 | 0 |
\(c,2n-5⋮n-1\Rightarrow\frac{2n-5}{n-1}\inℤ\Rightarrow\frac{2n-2-3}{n-1}\inℤ\)
\(\Rightarrow\frac{2n-2}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow\frac{2\left(n-1\right)}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow2-\frac{3}{n-1}\inℤ\)
\(2\inℤ\Rightarrow\frac{3}{n-1}\inℤ\Rightarrow n-1\inƯ\left(3\right)=\left\{\pm1,\pm3\right\}\)
Ta có bảng sau:
n - 1 | 1 | -1 | 3 | -3 |
n | 2 | 0 | 4 | -2 |
a)Ta có:3n+2=3.(n-1)+5
Mà 3.(n-1) chia hết cho (n-1) nên suy ra
Để 3.(n-1)+5 chia hết cho (n-1) thì 5 phải chia hết cho (n-1)
Suy ra:
n-1 thuộc ước của 5
Đến đây cậu tự làm tiếp nhé. Xin lỗi.
I don't now
...............
.................
a) ta có: n -6 chia hết cho n - 2
=> n - 2 - 4 chia hết cho n - 2
mà n - 2 chia hết cho n - 2
=> 4 chia hết cho n - 2
=> n - 2 thuộc Ư(4)={1;-1;2;-2;4;-4}
...
rùi bn tự xét giá trị để tìm n nha
câu b;c ;ebn làm tương tự như câu a nha
d) ta có: 3n -1 chia hết cho 11 - 2n
=> 2.(3n-1) chia hết cho 11 - 2n
6n - 2 chia hết cho 11 - 2n
=> -2 + 6n chia hết cho 11 - 2n
=> 31 - 33 + 6n chia hết cho 11 - 2n
=> 31 - 3.(11-2n) chia hết cho 11 - 2n
mà 3.(11-2n) chia hết cho 11 - 2n
=> 31 chia hết cho 11 - 2n
=> 11 - 2n thuộc Ư(31)={1;-1;31;-31)
...
Ta có : 3n + 4 = 3(n + 1) + 1 .
=> 3(n + 1) + 1 \(⋮\)n + 1 => 1 \(⋮\)n + 1 ( vì 3( n + 1 ) \(⋮\)n + 1 )
=> n + 1 \(\in\)Ư( 1 ) = { 1 ; - 1 }
=> n \(\in\){ 0 ; - 2 }
Vậy n \(\in\){ 0 ; - 2 } thì 3n + 4 \(⋮\)n + 1 .
Bài 2:
\(\Leftrightarrow n+1\in\left\{1;2;4\right\}\)
hay \(n\in\left\{0;1;3\right\}\)
a) 3n+2 chia hết n-1
=>3n-3+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 thuộc Ư(5)={-1;1;-5;5}
=>n thuộc {0;2;-4;6}
b) 3n+24 chia hết n-4
=>3n-12+36 chia hết cho n-4
=>36 chia hết cho n-4
=>n-4 thuộc Ư(36)={-1;1;-2;2;-3;3;-4;4;-6;6;-9;9;-12;12;-18;18;-36;36}
=>n thuộc{3;5;2;6;1;7;0;8;-2;10;-5;13;-8;16;-14;22;-32;40}
a)3n+2 chia hết cho n-1
=>3.(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 E Ư(5)={-5;-1;1;5}
=>n E {-4;0;2;6}
b)3n+24 chia hết cho n-4
=>3.(n-4)+36 chia hết cho n-4
=>36 chia hết cho n-4
=>n-4 E Ư(36)={-36;-18;-12;-9;-6;-4;-3;-2;-1;1;2;3;4;6;9;12;18;36}
=>n E {..} (bn tự liệt kê nhé)
vậy...
Tìm x thuộc Z biết: 3n + 4 chia hết cho n + 1
\(3n+4⋮n+1\)
\(\Rightarrow3\left(n+1\right)+1⋮n+1\)
Mà \(n+1⋮n+1\Rightarrow3\left(n+1\right)⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\in\left\{1;-1\right\}\)
Th1: \(n+1=1\)
\(\Leftrightarrow n=0\)
Th2: \(n+1=-1\)
\(\Leftrightarrow n=-2\)
Vậy \(n\in\left\{0;-2\right\}\)
NHỚ **** NHÉ!!!!!!!!!!!!!!!!!
3n+4 chia hết cho n+1 suy ra 3(n+1) + 1 chia hết cho n+1
để biểu thức trên chia hết cho n+1 thì n phải thuộc U(1)
+ n+1 = 1 tương đương n=0
+ n+1 =-1 tương đương n=-2
vậy ...
k cho mk nha !!!
3n + 4 chia hết cho n - 1
3n - 3 + 3 + 4 chia hết cho n - 1
3.(n - 1) + 7 chia hết cho n - 1
Ta có :
n - 1 chia hết cho n - 1
3.(n - 1) chia hết cho n - 1
=> 7 chia hết cho n - 1
=> n -1 thuộc Ư(7) = {1 ; -1 ; 7 ; -7}
Ta có bảng sau:
3n + 4 \(⋮\)n - 1
=> (3n - 1) + 5 \(⋮\)n - 1
=> 5 \(⋮\)n - 1
=> n - 1 \(\in\)Ư(5) = {-5;-1;1;5}
=> n \(\in\){-4;0;2;6}