K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8

Đề:
Cho tam giác nhọn \(A B C\), các đường cao \(A D , B E , C F\) đồng quy tại trực tâm \(H\).
Lấy \(X \in A D , Y \in B E , Z \in C F\) sao cho

\(\frac{D X}{D A} + \frac{E Y}{E B} + \frac{F Z}{F C} = 1.\)

Chứng minh \(H , X , Y , Z\) cùng thuộc một đường tròn.


Ý tưởng giải

Điều kiện “tổng tỉ lệ = 1” gợi đến Định lý Ceva dạng lượng giác hay dạng tỷ số đoạn thẳng. Nhưng ở đây lại liên quan đến tính chất hàng điểm điều hòalực của điểm (power of a point).

Một hướng quen thuộc: chứng minh rằng

\(\frac{D X}{D A} = \frac{H D}{H A} , \frac{E Y}{E B} = \frac{H E}{H B} , \frac{F Z}{F C} = \frac{H F}{H C} .\)

Nếu thay vào, điều kiện đề bài trở thành

\(\frac{H D}{H A} + \frac{H E}{H B} + \frac{H F}{H C} = 1.\)

Mà đẳng thức này đúng với trực tâm \(H\) trong tam giác nhọn (một đẳng thức quen thuộc trong hình học tam giác). Đây là chìa khoá.


Các bước chứng minh

  1. Biểu diễn điều kiện bằng lực của điểm H:
    Trên đoạn \(A D\), nếu \(X\) thỏa
    \(\frac{D X}{D A} = \frac{H D}{H A} ,\)
    thì theo định nghĩa, ta có
    \(H X \cdot H A = H D \cdot D A .\)
    Nghĩa là \(H\)\(A , D , X\) đồng viên.
    Tương tự trên \(B E , C F\).
  2. Từ đó ta suy ra \(H\) nằm trên các đường tròn \(\left(\right. A , D , X \left.\right) , \left(\right. B , E , Y \left.\right) , \left(\right. C , F , Z \left.\right)\).
  3. Giao của ba đường tròn này chính là điểm \(H\).
    Mặt khác, nhờ điều kiện tổng bằng 1, ba đường tròn này cùng đi qua một điểm thứ hai (không phải \(H\)). Chính là điểm chung của ba đường tròn – đó là đường tròn đi qua \(H , X , Y , Z\).
  4. Do đó, bốn điểm \(H , X , Y , Z\) đồng viên.

✅ Kết luận:

\(H , X , Y , Z \&\text{nbsp};\text{c} \overset{ˋ}{\text{u}} \text{ng}\&\text{nbsp};\text{thu}ộ\text{c}\&\text{nbsp};\text{m}ộ\text{t}\&\text{nbsp};đườ\text{ng}\&\text{nbsp};\text{tr} \overset{ˋ}{\text{o}} \text{n}.\)



MT
16 tháng 8

@
Trần Thị Khiêm dùng chat

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=36+64=100=10^2\)

=>BC=10(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(1\right)\)

Xét ΔABD vuông tại A có AK là đường cao

nên \(BK\cdot BD=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BH\cdot BC=BK\cdot BD\)

c: \(BH\cdot BC=BD\cdot BK\)

=>\(\frac{BH}{BK}=\frac{BD}{BC}\)

=>\(\frac{BH}{BD}=\frac{BK}{BC}\)

Xét ΔBHK và ΔBDC có

\(\frac{BH}{BD}=\frac{BK}{BC}\)

góc HBK chung

Do đó: ΔBHK~ΔBDC
=>\(\hat{BKH}=\hat{BCD}=\hat{ACB}\)

Bài 4:

a: ΔCAB vuông tại C

=>\(\hat{CAB}+\hat{CBA}=90^0\)

=>\(\hat{CBA}=90^0-70^0=20^0\)

Xét ΔCBA vuông tại C có \(\sin CBA=\frac{CA}{AB}\)

=>\(CA=AB\cdot\sin CBA=10\cdot\sin20\) ≃3,4(dm)

ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=AB^2-CA^2\)

=>\(CB=\sqrt{AB^2-AC^2}\) ≃9,4(dm)

b: Xét ΔABC vuông tại C có \(cosA=\frac{CA}{AB}\)

Xét ΔCHA vuông tại H có \(cosA=\frac{AH}{AC}\)

Xét ΔCHB vuông tại H có \(\sin B=\frac{CH}{CB}\)

Xét ΔCAB vuông tại C có \(\sin B=\frac{AC}{AB}\)

\(\sin B\cdot cosA=\frac{AC}{AB}\cdot\frac{AH}{AC}=\frac{AH}{AB}\)

Bài 5:

Xét ΔMAB có \(\hat{MBH}\) là góc ngoài tại đỉnh B

nên \(\hat{MBH}=\hat{A}+\hat{BMA}\)

=>\(\hat{BMA}=39^0-18^0=21^0\)

Xét ΔMAB có \(\frac{AB}{\sin AMB}=\frac{MB}{\sin A}\)

=>\(\frac{MB}{\sin18}=\frac{80}{\sin21}\)

=>\(MB=80\cdot\frac{\sin18}{\sin21}\) ≃69(m)

Xét ΔMHB vuông tại H có \(\sin HBM=\frac{HM}{MB}\)

=>\(HM=MB\cdot\sin HBM\) ≃69*sin39≃43,4(m)

=>Chiều cao của ngọn hải đăng là khoảng 43,4 mét

15 tháng 8

em cảm ơn a nhiều ạ

Xét ΔOAB có \(OA^2+OB^2=AB^2\)

nên ΔOAB vuông tại O

=>\(\hat{AOB}=90^0\)

=>số đo cung nhỏ AB=90 độ

Số đo cung lớn AB là \(360^0-90^0=270^0\)

Xét ΔOCB có

CH là đường trung tuyến

CH là đường cao

DO đó: ΔOCB cân tại C

=>OC=CB

mà OC=OB

nên OC=OB=CB

=>ΔOBC đều

=>\(\hat{COB}=60^0\)

ΔOCD cân tại O

mà OH là đường cao

nên OH là phân giác của góc COD

=>\(\hat{COD}=2\cdot\hat{COH}=2\cdot60^0=120^0\)

=>Số đo cung nhỏ CD là 120 độ

Số đo cung lớn CD là:

\(360^0-120^0=240^0\)

a: Xét ΔAOB có OA=OB=AB(=R)

nên ΔOAB đều

=>\(\hat{AOB}=60^0\)

b: Số đo cung lớn AB là:

\(360^0-60^0=300^0\)

Ta có ΔABC đều

=>\(\hat{ACB}=60^0\)

Xét (O) có \(\hat{ACB}\) là góc nội tiếp chắn cung AB

=>\(\hat{AOB}=2\cdot\hat{ACB}=2\cdot60^0=120^0\)