Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)
\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)
2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)
\(\Rightarrow\frac{3}{2}< x< 2\)
3. \(\Leftrightarrow\left(5x-3\right)^2>0\)
\(\Rightarrow x\ne\frac{3}{5}\)
4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)
\(\Rightarrow x\in R\)
5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)
\(\Rightarrow x\in R\)
6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)
\(\Rightarrow-2\le x\le-\frac{7}{8}\)
7.
\(\Leftrightarrow\left(x-1\right)^2+2>0\)
\(\Rightarrow x\in R\)
8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)
9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)
\(\Rightarrow-6< x< -3\)
10. \(\Leftrightarrow x^2-6x+9>0\)
\(\Leftrightarrow\left(x-3\right)^2>0\)
\(\Rightarrow x\ne3\)
Mình giải mẫu pt đầu thôi nhé, những pt sau ttự.
1,\(x^4-\frac{1}{2}x^3-x^2-\frac{1}{2}x+1=0\)
Ta thấy x=0 ko là nghiệm.
Chia cả 2 vế cho x2 >0:
pt\(\Leftrightarrow x^2-\frac{1}{2}x-1-\frac{1}{2x}+\frac{1}{x^2}=0\)
Đặt \(t=x-\frac{1}{x}\left(t\in R\right)\)
\(\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)
pt\(\Leftrightarrow t^2-\frac{1}{2}t+1=0\)(vô n0)
Vậy pt vô n0.
#Walker
Giải các phương trình và hệ phương trình:
a) x2 - \(2\sqrt{5}\)x + 5 = 0
Ta có: x2 - \(2\sqrt{5}\)x + 5 = 0 <=> ( x = \(\sqrt{5}\) )2 = 0 <=> x - \(\sqrt{5}\) = 0 <=> x = \(\sqrt{5}\)
Vậy phương trình đã cho có tập nghiệm S = ( \(\sqrt{5}\) )
c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\) <=> \(\begin{cases}6x+15y=-3\\6x-4y=16\end{cases}\) <=> \(\begin{cases}19y=-19\\3x-2y=8\end{cases}\) <=> \(\begin{cases}y=-1\\3x-2.\left(-1\right)=8\end{cases}\) <=> \(\begin{cases}y=-1\\x=2\end{cases}\)
Vậy hệ phương trình có 1 nghiệm duy nhất (x ; y) = (2 ; -1)
a/ - Với \(x>\frac{1}{4}\) PT vô nghiêm
- Với \(x\le\frac{1}{4}\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(1-4x\right)^2\)
\(\Leftrightarrow\left(x^2+4x-2\right)\left(x^2-4x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+4x-2=0\\x^2-4x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\left(l\right)\\x=-2-\sqrt{6}\\x=4\left(l\right)\\x=0\end{matrix}\right.\)
2.
- Với \(x\ge-\frac{1}{4}\Leftrightarrow4x+1=x^2+2x-4\)
\(\Leftrightarrow x^2-2x-5=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{6}\\x=1-\sqrt{6}\left(l\right)\end{matrix}\right.\)
- Với \(x< -\frac{1}{4}\)
\(\Leftrightarrow-4x-1=x^2+2x-4\)
\(\Leftrightarrow x^2+6x-3=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3+2\sqrt{3}\left(l\right)\\x=-3-2\sqrt{3}\end{matrix}\right.\)
3.
- Với \(x\ge\frac{5}{3}\)
\(\Leftrightarrow3x-5=2x^2+x-3\)
\(\Leftrightarrow2x^2-2x+2=0\left(vn\right)\)
- Với \(x< \frac{5}{3}\)
\(\Leftrightarrow5-3x=2x^2+x-3\)
\(\Leftrightarrow2x^2+4x-8=0\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\)
4. Do hai vế của pt đều không âm, bình phương 2 vế:
\(\Leftrightarrow\left(x^2-2x+8\right)^2=\left(x^2-1\right)^2\)
\(\Leftrightarrow\left(x^2-2x+8\right)^2-\left(x^2-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2-2x+7\right)\left(-2x+9\right)=0\)
\(\Leftrightarrow-2x+9=0\Rightarrow x=\frac{9}{2}\)
Bài 3:
a: TH1: m=-2
=>-2(-2-1)x+4<0
=>6x+4<0
=>x<-4/6(loại)
TH2: m<>-2
\(\text{Δ}=\left(2m-2\right)^2-16\left(m+2\right)\)
=4m^2-8m+4-16m-32
=4m^2-24m-28
Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}4m^2-24m-28< =0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< =m< =7\\m>-2\end{matrix}\right.\Leftrightarrow-1< =m< =7\)
b: TH1: m=3
=>5x-4>0
=>x>4/5(loại)
TH2: m<>3
Δ=(m+2)^2-4*(-4)(m-3)
\(=m^2+4m+4+16m-48=m^2+20m-44\)
Để bất phương trình vô nghiệm thì
\(\left\{{}\begin{matrix}m^2+20m-44< =0\\m-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-22< =m< =2\\m< 3\end{matrix}\right.\Leftrightarrow-22< =m< =2\)
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4