Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Tam giác AMN cân tại A (gt). \(\Rightarrow\) \(\widehat{AMN}=\widehat{ANM};AM=AN.\)
Xét tam giác AMB và tam giác ANC có:
+ AM = AN (cmt).
+ \(\widehat{AMB}=\widehat{ANC}\left(\widehat{AMN}=\widehat{ANM}\right).\)
+ MB = NC (gt).
\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).
\(\Rightarrow\) AB = AC (cặp cạnh tương ứng).
Xét tam giác ABC có: AB = AC (cmt).
\(\Rightarrow\) Tam giác ABC cân tại A.
b/ Tam giác ABC cân tại A (cmt) \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\)
Mà \(\widehat{ABC}=\widehat{MBH;}\widehat{ACB}=\widehat{NCK}\text{}\) (đối đỉnh).
\(\Rightarrow\) \(\widehat{MBH}=\widehat{NCK}.\)
Xét tam giác MBH và tam giác NCK \(\left(\widehat{BHM}=\widehat{CKN}=90^o\right)\)có:
+ MB = NC (gt).
+ \(\widehat{MBH}=\widehat{NCK}\left(cmt\right).\)
\(\Rightarrow\) Tam giác MBH = Tam giác NCK (cạnh huyền - góc nhọn).
c/ Tam giác MBH = Tam giác NCK (cmt).
\(\Rightarrow\) \(\widehat{BMH}=\widehat{CNK}\) (cặp góc tương ứng).
Xét tam giác OMN có: \(\widehat{NMO}=\widehat{MNO}\) (do \(\widehat{BMH}=\widehat{CNK}\)).
\(\Rightarrow\) Tam giác OMN tại O.
a: góc ACB=180-50-65=65 độ
b: góc yAC=180-50=130 độ
góc yAx=góc ABC=65 độ=1/2*góc yAC
=>Ax là phân giác của góc yAC
Bạn viết lại đề bằng công thức toán. Chụp hình ntn chữ hơi xấu khó đọc á.
4:
a: Xét ΔADH vuông tại D và ΔHEA vuông tại E có
AH chung
góc HAD=góc AHE
=>ΔADH=ΔHEA
=>DH=EA
b: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
mà AH cắt DE tại I
nên IA=IH=ID=IE
c: ADHE là hình chữ nhật
=>góc ADE=góc AHE
mà góc AHE=góc ACB
nên góc ADE=góc ACB
3:
OE là phân giác của góc DOC
=>góc EOD=góc EOC=55 độ
góc DOC=2*góc EOC=2*55=110 độ
4:
a: góc xOz+góc yOz=180 độ(kề bù)
=>góc yOz=180-60=120 độ
b: góc mOn=góc nOz+góc mOz
=1/2(góc xOz+góc yOz)
=1/2*180=90 độ
Bài 4:
Nhóm 1: x;1/3x; 8x
Nhóm 2: \(x^2;5x^2;-3x^2\)
a: Xét ΔBDA và ΔMDA có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔBDA=ΔMDA
Suy ra: \(\widehat{BDA}=\widehat{MDA}\)
hay DA là tia phân giác của \(\widehat{BDM}\)