K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2016

Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)

Vì \(a^2+b^2+c^2=1\Rightarrow lal,lbl,lcl\le1\)

\(\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}}\Rightarrow a^2+b^2+c^2\ge a^3+b^3+c^3=1\)

Dấu = xảy ra khi \(\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}}\)

Mà theo giả thuyết thì \(\hept{\begin{cases}a\ge b\ge c\\a^2+b^2+c^2=1\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=c=0\end{cases}}}\)

Vậy C = 1

Tương tự với các trường hợp giả sử về a,b,c khác ta luôn có giá trị C = 1

11 tháng 10 2016

Giả sử\(a\ge b\ge c\)(ko mất tính tổng quát) .Ta có :\(\hept{\begin{cases}a^2+b^2+c^2=1\\a^2;b^2;c^2\ge0\end{cases}\Rightarrow a^2;b^2;c^2\le1\Rightarrow|a|;|b|;|c|\le1\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}\Rightarrow}a^2+b^2+c^2\ge a^3+b^3+c^3=1}\)

\(\Rightarrow\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}\Rightarrow\hept{\begin{cases}a,b,c\in\left\{0;1\right\}\\a^2+b^2+c^2=1\\a\ge b\ge c\end{cases}}\Rightarrow a=1;b=c=0\Rightarrow a^2+b^9+c^{1945}=1}\)

4 tháng 9 2019

Ta có:

\(a^2+b^2+c^2=a^3+b^3+c^3\)

\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)

Mà 

\(a^2+b^2+c^2=1\Rightarrow\left|a\right|\le1;\left|b\right|\le1;\left|c\right|\le1\Rightarrow1-a\ge0;1-b\ge0;1-c\ge0\)

\(\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)

Dấu "=" xảy ra khi và chỉ khi:\(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0\)

Khi đó ta tìm được \(\left(a;b;c\right)=\left(1;0;0\right)\) và các hoán vị.

Thay vào ta tìm được \(C=1\)

P/S:Mik nghĩ đề là \(a^2+b^9+c^{1945}\) thì sẽ hợp lý hơn:3

27 tháng 8 2016

a\(^2\)+ b\(^2\) + c\(^2\) = 1⇒ \(\left|a\right|\); \(\left|b\right|\) ; \(\left|c\right|\) ≤ 1

\(\left|a^3\right|\) ≤ a\(^2\) ; \(\left|b^3\right|\) ≤ b\(^2\) ; \(\left|c^3\right|\) ≤ c\(^2\)

⇒a\(^3\)+ b\(^3\)+ c\(^3\)\(\left|a^3\right|\) + \(\left|b^3\right|\) + \(\left|c^3\right|\) ≤ a\(^2\) + b\(^2\) + c\(^2\) = 1

Dấu "=" xảy ra khi( a;b;c) = (1;0;0) ; (0;1;0) ; (0;0;1)

Vậy S = 0 + 0 + 1 = 1

27 tháng 8 2016

giup minh nha cac ban

23 tháng 7 2018

2) b)

Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\) 

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)

\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)

\(ab+bc+ac=-60:2=-30\)

23 tháng 7 2018

a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)

                           = (x+y)^3

                           = 1^3 =1

b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac

    9^2 = 141 +2(ab+bc+ac)

    -60 = 2(ab+bc+ac)

    ab+ac+bc=-30

Vậy M=-30

c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)

       = x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3

       = x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3

       = 0

Vậy N=0 .Chúc bạn học tốt.