Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x)=5x5-4x4-2x3+4x2+3x+6
Q(x)=-x5+2x4-2x3+3x2-x+\(\frac{1}{4}\)
a, Sắp xếp : \(P\left(x\right)=2x^3+5x^2-3x^4+7-4x\)
\(\Rightarrow P\left(x\right)=-3x^4+2x^3-5x^2-4x+7\)
\(Q\left(x\right)=-3+2x^4-x+x^3-5x^2\)
\(\Rightarrow Q\left(x\right)=2x^4+x^3-5x^2-x-3\)
b, Ta có :* Đặt \(V\left(x\right)=P\left(x\right)+Q\left(x\right)\)
hay \(V\left(x\right)=2x^3+5x^2-3x^4+7-4x-3+2x^4-x+x^3-5x^2\)
\(=3x^3-x^4+4-5x\)
Vậy \(V\left(x\right)=3x^3-x^4+4-5x\)
Ta có : * Đặt \(K\left(x\right)=P\left(x\right)-Q\left(x\right)\)
hay \(2x^3+5x^2-3x^4+7-4x-\left(-3+2x^4-x+x^3-5x^2\right)\)
\(=2x^3+5x^2-3x^4+7-4x+3-2x^4+x-x^3+5x^2\)
\(=x^3+10x^2-5x^4+10-3x\)
Vậy \(K\left(x\right)=x^3+10x^2-5x^4+10-3x\)
a,P(x)=4x\(^3\)+2x\(^2\)-2x+7-x\(^2\)-x
=4x\(^3\)+(2x\(^2\)-x\(^2\))+(-2x-x)+7
=4x\(^3\)+x\(^2\)-3x+7
Q(x)=-4x\(^3\)+x-14-2x-x\(^2\)-1
=-4x\(^3\)-x\(^2\)+(x-2x)+(-14-1)
= -4x\(^3\)-x\(^2\) -x -15
b, P(x)+Q(x)=4x\(^3\)+x\(^2\)-3x+7-4x\(^3\)-x\(^2\) -x -15
=\(\left(4x^3-4x^3\right)\)+\(\left(x^2-x^2\right)\)+(-3x-x)+(7-15)
= -4x-8
P(x)-Q(x)=(4x\(^3\)+x\(^2\)-3x+7)-(-4x\(^3\)-x\(^2\) -x -15)
=4x\(^3\)+x\(^2\)-3x+7+4x\(^3\)+x\(^2\) +x +15
=\(\left(4x^3+4x^3\right)\)+\(\left(x^2+x^2\right)\)+(-3x+x)+(7+15)
= \(8x^3\) + \(2x^2\) - 2x + 22
tìm nghiệm của đa thức sau:
a,\(\left(-\dfrac{5}{3}x^2+\dfrac{3}{5}\right)\left(x^2-2\right)\)
Xét \(\left(-\dfrac{5}{3}x^2+\dfrac{3}{5}\right)\left(x^2-2\right)\) \(=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{5}{3}x^2+\dfrac{3}{5}=0\\x^2-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{5}{3x}x^2=-\dfrac{3}{5}\\x^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=\dfrac{9}{25}\\\left[{}\begin{matrix}x=-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{9}{25}\\x=-\dfrac{9}{25}\end{matrix}\right.\\\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy nghiệm của đa thức \(\left(-\dfrac{5}{3}x^2+\dfrac{3}{5}\right)\left(x^2-2\right)\) là \(\left\{\dfrac{9}{25};-\dfrac{9}{25};\sqrt{2};-\sqrt{2}\right\}\)
trả lời:
p(-1)=5(-1)^5+3(-1)-4(-1)^4-2(-1)^3+6+4(-1)^2
=-5-3-4+2+6+4=0
q(1)=2.1^4-1+3.1^2-2.1^3+1/4-1^4
=2+3-2+1/4-1=9/4>>4.q(1)=4.9/4=9
\(Q\left(x\right)=x^4+4x^3+2x^2-4x+1\)
\(\Rightarrow Q\left(-2\right)=\left(-2\right)^4+4\cdot\left(-2\right)^3+2\cdot\left(-2\right)^2-4\cdot\left(-2\right)+1=1\)
\(Q\left(-1\right)=\left(-1\right)^4+4\cdot\left(-1\right)^3+2\cdot\left(-1\right)^2-4\cdot\left(-1\right)+1=4\)