Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)
b) Ta có: \(B=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
c) Để B>1 thì B-1>0
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}>0\)
\(\Leftrightarrow\dfrac{4}{\sqrt{x}-3}>0\)
\(\Leftrightarrow\sqrt{x}>3\)
hay x>9
Bài 2:
d) Để B nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;-1;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\)
hay \(x\in\left\{1;16;25;49\right\}\)
Bài 7 làm mẫu nha các bài còn lại tương tự :
a, \(A=x^2-4x+1=x^2-4x+4-3=\left(x-2\right)^2-3\)
Thấy : \(\left(x-2\right)^2\ge0\forall x\in R\)
\(\Rightarrow A=\left(x-2\right)^2-3\ge-3\)
Vậy \(Min_A=-3\Leftrightarrow x=2\)
b, Ta có : \(B=4x^2+4x+11=4x^2+4x+1+10=\left(2x+1\right)^2+10\)
Thấy : \(\left(2x+1\right)^2\ge0\forall x\in R\)
\(\Rightarrow B=\left(2x+1\right)^2+10\ge10\)
Vậy \(Min_B=10\Leftrightarrow x=-\dfrac{1}{2}\)
c, Ta có : \(C=3x^2-6x-1=3x^2-6x+3-4=3\left(x^2-2x+1\right)-4\)
\(=3\left(x-1\right)^2-4\)
Thấy : \(3\left(x-1\right)^2\ge0\forall x\in R\)
\(\Rightarrow C=3\left(x-1\right)^2-4\ge-4\)
Vậy \(Min_C=-4\Leftrightarrow x=1\)
d, Ta có : \(D=x^2+5x+7=x^2+2.x.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}=\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)
Thấy : \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\in R\)
\(\Rightarrow D=\left(x+\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy \(Min_D=\dfrac{3}{4}\Leftrightarrow x=-\dfrac{5}{2}\)
Bài toán 5:
a. $(a-b)^3=[-(b-a)]^3=(-1)^3(b-a)^3=-(b-a)^3$
b. $(-a-b)^2=[(-1)(a+b)]^2=(-1)^2(a+b)^2=(a+b)^2$
c. \(x(x-3y)^2+y(y-3x)^2=x(x^2-6xy+9y^2)+y(y^2-6xy+9x^2)\)
\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y=x^3+3x^2y+3xy^2+y^3\)
\(=(x+y)^3\)
d.
\((x+y)^3-(x-y)^3=(x^3+3x^2y+3xy^2+y^3)-(x^3-3x^2y+3xy^2-y^3)\)
\(=6x^2y+2y^3=2y(3x^2+y^2)\)
a, \(A+B=5+\sqrt{15}+5-\sqrt{15}=10\)
\(AB=\left(5+\sqrt{15}\right)\left(5-\sqrt{15}\right)=5^2-\sqrt{15^2}=25-15=10\)
b, \(P=\left(\dfrac{x+3}{x-9}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(\Rightarrow P=\left(\dfrac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(\Rightarrow P=\left(\dfrac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(\Rightarrow P=\dfrac{x+3-x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(\Rightarrow P=\dfrac{3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(\Rightarrow P=\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)
\(\Rightarrow P=\dfrac{3}{\sqrt{x}+3}\)
\(x=0\Rightarrow A=0\)
Với \(x\ne0\)
\(\Rightarrow A=\dfrac{1}{\sqrt{x}+2+\dfrac{5}{\sqrt{x}}}=\dfrac{1}{\sqrt{x}+\dfrac{5}{\sqrt{x}}+2}\le\dfrac{1}{2\sqrt{\dfrac{5\sqrt{x}}{\sqrt{x}}}+2}=\dfrac{1}{2\sqrt{5}+2}\)
\(A_{max}=\dfrac{1}{2\sqrt{5}+2}\) khi \(\sqrt{x}=\dfrac{5}{\sqrt{x}}\Rightarrow x=5\)
a: Áp dụng định lí Pytago, ta được:
\(\left(x+y\right)^2=6^2+8^2=10^2\)
hay x+y=10
Áp dụng hệ thức lượng trong tam giác vuông, ta được:
\(\left\{{}\begin{matrix}x\cdot10=6^2\\y\cdot10=8^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3,6cm\\y=6,4cm\end{matrix}\right.\)
ĐKXĐ: \(x^2+5x+3\ge0\)
\(x^2+5x+6-2\sqrt{x^2+5x+3}=6\)
\(\Leftrightarrow x^2+5x+3-2\sqrt{x^2+5x+3}-3=0\)
\(\Leftrightarrow\left(\sqrt{x^2+5x+3}+1\right)\left(\sqrt{x^2+5x+3}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+5x+3}+1=0\left(vn\right)\\\sqrt{x^2+5x+3}=3\end{matrix}\right.\)
\(\Leftrightarrow x^2+5x+3=9\)
\(\Leftrightarrow x^2+5x-6=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\) (nhận)
\(\tan15^o=\tan\left(45^o-30^o\right)\)
\(=\frac{\tan45^o-\tan30^o}{1+\tan45^o.\tan30^o}\)
\(=\frac{1-\frac{\sqrt{3}}{3}}{1+1.\frac{\sqrt{3}}{3}}\)
\(=\frac{1-\frac{\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{3}}\)