K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
14 tháng 8 2021

a.\(P=\left(\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right).\left(\frac{1-x}{2\sqrt{x}}\right)^2=\left(-\frac{4\sqrt{x}}{x-1}\right).\frac{\left(1-x\right)^2}{4x}=\frac{1-x}{\sqrt{x}}\)

b.P không có giá trị lớn nhất hay nhỏ nhất.

c.\(P=\frac{1-x}{\sqrt{x}}=2\Leftrightarrow x+2\sqrt{x}-1=0\Leftrightarrow\left(\sqrt{x}+1\right)^2=2\Leftrightarrow\sqrt{x}+1=\sqrt{2}\)

hay \(x=3-2\sqrt{2}\)

d.\(x=3-2\sqrt{2}\Rightarrow P=2\) (dựa vào câu c)

e.\(P>0\Leftrightarrow\hept{\begin{cases}1-x>0\\x>0\end{cases}\Leftrightarrow0< x< 1}\)

g.ta có \(P+2\sqrt{x}=\frac{1-x}{\sqrt{x}}+2\sqrt{x}=\frac{1+x}{\sqrt{x}}>0\)

Vậy \(P>-2\sqrt{x}\)

Bài 2: 

d) Ta có: \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5}+1+\sqrt{5}-1\)

\(=2\sqrt{5}\)

e) Ta có: \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

16 tháng 7 2021

Giải giúp em câu 2 b,c,g,f,h với ạ

27 tháng 12 2021

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}\dfrac{2}{3}x=-\dfrac{1}{3}x+2\\y=\dfrac{2}{3}x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{4}{3}\end{matrix}\right.\)

5 tháng 2 2022

Mik nhớ là mik làm từ i - y rồi

1: ĐKXĐ: (x-3)(x+1)>=0

=>x>=3 hoặc x<=-1

2: ĐKXĐ: x(x+2)>=0

=>x>=0 hoặc x<=-2

3: ĐKXĐ: (x-4)(x+4)>=0

=>x>=4 hoặc x<=-4

4: DKXĐ: (x-2)(x+2)>=0

=>x>=2 hoặc x<=-2

6: ĐKXĐ: (x-6)(x+6)>=0

=>x>=6 hoặc x<=-6

7: ĐKXĐ: 2x-16>=0

=>x>=8

8: ĐKXĐ: x(x-1)>=0

=>x>=1 hoặc x<=0

16 tháng 11 2021

Công thức đây nhé (Áp dụng làm thử đi)

Tỉ số giữa cạnh đối và cạnh huyền được gọi là sin của góc \alpha, kí hiệu \sin\alpha.
 Tỉ số giữa cạnh kề và cạnh huyền được gọi là côsin của góc \alpha, kí hiệu \cos\alpha.
 Tỉ số giữa cạnh đối và cạnh kề được gọi là tang của góc \alpha, kí hiệu \tan\alpha.
 Tỉ số giữa cạnh kề và cạnh đối gọi là côtang của góc \alpha, kí hiệu \cot\alpha.
16 tháng 11 2021

Ai biết câu trả lời giúp em liền với ạ huhu

a: ΔOBC cân tại O

ma OI là trung tuyến

nên OI vuông góc BC

=>góc OIA=90 độ

góc OIA=góc OMA=góc ONA=90 độ

=>O,I,M,A,N cùng thuộc đường tròn đường kính OA
Tâm là trung điểm của OA

R'=OA/2=R

b: Xét ΔAON vuông tại N có cos AON=ON/OA=1/2

nêngóc AON=60 độ

=>góc MON=120 độ

sđ cung MN=120 độ

c: Xét ΔAMB và ΔACM có

góc AMB=góc ACM

góc MAB chung

=>ΔAMB đồng dạng với ΔACM

=>AM/AC=AB/AM

=>AM^2=AB*AC

5 tháng 10 2021

\(W=\dfrac{1}{2}\left(\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\right)\\ W=\dfrac{1}{2}\left(2+\sqrt{2}+2-\sqrt{2}\right)=\dfrac{1}{2}\cdot4=2\\ Y=\dfrac{1}{2}\left(\sqrt{\left(4+\sqrt{3}\right)^2}+\sqrt{\left(4-\sqrt{3}\right)^2}\right)\\ Y=\dfrac{1}{2}\left(4+\sqrt{3}+4-\sqrt{3}\right)=\dfrac{1}{2}\cdot8=4\)

22 tháng 10 2021

\(b,B=\dfrac{x-4+2\sqrt{x}+6-3\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ B=\dfrac{x-\sqrt{x}+2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\\ c,M=B:A=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}+3}{x-\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+2}\\ M=\dfrac{x-\sqrt{x}+2-x+2\sqrt{x}-1}{x-\sqrt{x}+2}\\ M=1-\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}+2}=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\)

Ta có \(\left(\sqrt{x}-1\right)^2\ge0;x-\sqrt{x}+2=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)

Do đó \(\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\ge0\)

\(\Leftrightarrow M=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\le1-0=1\)

Vậy \(M_{max}=1\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(tm\right)\)

22 tháng 10 2021

a: Thay \(x=3+2\sqrt{2}\) vào A, ta được:

\(A=\dfrac{3+2\sqrt{2}-\sqrt{2}-1+2}{\sqrt{2}+1+3}=\dfrac{4+\sqrt{2}}{4+\sqrt{2}}=1\)