Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với `x >= 0,x ne 1` có:
Bth`=[2x+4+(\sqrt{x}+2)(\sqrt{x}-1)-2(x+\sqrt{x}+1)]/[(\sqrt{x}-1)(x+\sqrt{x}+1)]`
`=[2x+4+x-\sqrt{x}+2\sqrt{x}-2-2x-2\sqrt{x}-2]/[(\sqrt{x}-1)(x+\sqrt{x}+1)]`
`=[x-\sqrt{x}]/[(\sqrt{x}-1)(x+\sqrt{x}+1)]`
`=[\sqrt{x}(\sqrt{x}-1)]/[(\sqrt{x}-1)(x+\sqrt{x}+1)]`
`=\sqrt{x}/[x+\sqrt{x}+1]`
= \(\dfrac{2x+4}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) + \(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) - \(\dfrac{2x+2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
= \(\dfrac{2x+4+x-\sqrt{x}+2\sqrt{x}-2-2x-2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
= \(\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
= \(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(x^2+\sqrt{5}x-10=0\)
\(\Delta=5-4\left(-10\right)=45>0\)
Vậy pt có nghiệm pb
\(x_1=\dfrac{-\sqrt{5}-3\sqrt{5}}{2}=-2\sqrt{5};x_2=\dfrac{-\sqrt{5}+3\sqrt{5}}{2}=\sqrt{5}\)
a)\(\Rightarrow P=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b) Ta có P=2
\(\dfrac{\Leftrightarrow3\sqrt{x}}{\sqrt{x}+2}=2\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)
\(\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\left(n\right)\)
Vậy x=16 thì P=2
\(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}\)
\(=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}\)
\(=\sqrt{2}+\sqrt{3}-\sqrt{2}=\sqrt{3}\)
\(\sqrt{x^2+2}=\sqrt{1-2x}\left(đkxđ:x\le\dfrac{1}{2}\right)\)
\(\Leftrightarrow x^2+2=1-2x\)
\(\Leftrightarrow x^2+2x+2-1=0\)
\(\Leftrightarrow x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\left(tmđk\right)\)
\(\sqrt{x^2+2}=\sqrt{1-2x}\)
=>\(\left\{{}\begin{matrix}1-2x>=0\\x^2+2=1-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\x^2+2x+1=0\end{matrix}\right.\)
=>x=-1
\(Q=\left(\dfrac{1}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}-1}\right):\dfrac{1}{1-4x}\)
\(=\left(\dfrac{2\sqrt{x}-1}{\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{2\sqrt{x}+1}{\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\right).\left(1-4x\right)\)
\(=\left(\dfrac{2\sqrt{x}-1+2\sqrt{x}+1}{4x-1}\right)\left(1-4x\right)\)
\(=\dfrac{-4\sqrt{x}.\left(4x-1\right)}{4x-1}=-4\sqrt{x}\)
\(Q=\left(\dfrac{1}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}-1}\right):\dfrac{1}{1-4x}\left(dkxd:x\ge0;x\ne\dfrac{1}{4}\right)\)
\(=\left[\dfrac{2\sqrt{x}-1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}+1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\right]\cdot\left(1-4x\right)\)
\(=\dfrac{2\sqrt{x}-1+2\sqrt{x}+1}{4x-1}\cdot\left[-\left(4x-1\right)\right]\)
\(=4\sqrt{x}\cdot\left(-1\right)\)
\(=-4\sqrt{x}\)
1 điểm bằng mấy k bạn ơi
dương lý khánh hạ là sao bạn ???