
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


B = 1 + 2\(^2\) + 2\(^4\) + ... + 2\(^{2024}\) + 2\(^{2026}\)
2\(^2\) B = 2\(^2\) + 2\(^4\) + ...+ \(2^{2026}\) + 2\(^{2028}\)
4B - B = 2\(^2\) + 2\(^4\) + ...+ \(2^{2026}\) + 2\(^{2028}\) - 1 - 2\(^2\) - 2\(^4\) - ... - 2\(^{2024}\) - 2\(^{2026}\)
3B = (2\(^2\) - 2\(^2\)) + (2\(^4\) - 2\(^4\)) +...+ (2\(^{2026}\) - \(2^{2026}\)) + (2\(^{2028}\) - 1)
3B = 0 + 0 +... + 0 + 2\(^{2028}\) - 1
3B = 2\(^{2028}\) - 1
B = \(\frac{2^{2028}-1}{3}\)
Ta có: \(B=1+2^2+2^4+\cdots+2^{2024}+2^{2026}\)
=>\(4B=2^2+2^4+2^6+\ldots+2^{2026}+2^{2028}\)
=>\(4B-B=2^2+2^4+2^6+\cdots+2^{2026}+2^{2028}-1-2^2-\cdots-2^{2026}\)
=>\(3B=2^{2028}-1\)
=>\(B=\frac{2^{2028}-1}{3}\)

A = \(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+...+ \(\dfrac{1}{1+2+...+2004}\)+ \(\dfrac{2}{2025}\)
A = \(\dfrac{1}{\left(1+3\right).3:2}\)+\(\dfrac{1}{\left(4+1\right).4:2}\)+...+ \(\dfrac{1}{\left(2024+1\right).2024:2}\)+\(\dfrac{2}{2025}\)
A = \(\dfrac{2}{3.4}\)+\(\dfrac{2}{4.5}\)+...+\(\dfrac{2}{2024.2025}\)+ \(\dfrac{2}{2025}\)
A = 2.(\(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+...+ \(\dfrac{1}{2024.2025}\)) + \(\dfrac{2}{2025}\)
A = 2.(\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+...+ \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\)) + \(\dfrac{2}{2025}\)
A = 2.(\(\dfrac{1}{3}\) - \(\dfrac{1}{2025}\)) + \(\dfrac{2}{2025}\)
A = \(\dfrac{2}{3}\) - \(\dfrac{2}{2025}\) + \(\dfrac{2}{2025}\)
A = \(\dfrac{2}{3}\)

a; A = (32.5 - 160: 22) + 2024
A = (9.5 - 160 : 4) + 2024
A = (45 - 40) + 2024
A = 5 + 2024
A = 2029
b; B = (-360) - (-87) + 69 - 87
B = -360 + 87 + 69 - 87
B = - (360 - 69) + (87 - 87)
B = - 291 + 0
B = -291
c; C = 182.26 - 82.26 + 500
C = 26.(182 - 82) + 500
C = 26.100 + 500
C = 2600 + 500
C = 3100

Câu 1: 56 - 2.(\(x+3\))\(^3\) = 2
2.(\(x\) + 3)\(^3\) = 56 - 2
2.(\(x+3\))\(^3\) = 54
(\(x+3\))\(^3\) = 54 : 2
(\(x+3\))\(^3\) = 27
(\(x+3\))\(^3\) = 3\(^3\)
\(x+3\) = 3
\(x=0\)
Vậy \(x\) = 0
Câu 2:
4.2\(^{x}\) - 3 = 125
4.2\(^{x}\) = 125 + 3
4.2\(^{x}\) = 128
2\(^{x}\) = 128 : 4
2\(^{x}\) = 32
2\(^{x}\) = 2\(^5\)
\(x\) = 5
Vậy \(x=5\)

a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.100}\)
\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A< 2-\frac{1}{50}\)
\(A< 2\)
b, \(B=2+2^2+2^3+...+2^{30}\)
Ta có :\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{29}+2^{30}\right)\)
\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{29}\left(1+2\right)\)
\(B=2.3+2^3.3+...+2^{29}.3\)
\(B=3\left(2+2^3+...+2^{29}\right)\)chia hết cho 3(1)
Lại có\(B=\left(2+2^2+2^4\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)
\(B=2\left(1+2+4\right)+...+2^{28}\left(1+2+4\right)\)
\(B=2.7+...+2^{28}.7\)
\(B=7\left(2+...+2^{29}\right)\) chia hết cho 7 (2)
Mà (3,7)=1 (3)
Từ (1)(2)(3) => B chia hết cho 21

1+1/2.(1+2)+1/3.(1+2+3)+1/4.(1+2+3+4)+...+1/2023.(1+2+3+...+2023)
=1+1/2.(1+2).2/2+1/3.(1+3).3/2+1/4.(1+4).4/2+...+1/2023.(1+2+3+...+2023).2023/2
=2/2+3/2+4/2+...+2023/2
=2+3+4+...+2023/2
=2025.2022/2/2
=1023637,5

