Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2-8x+1\)
\(A=2\left(x^2-4x+\frac{1}{2}\right)\)
\(A=2\left[x^2-2.2x+4-4+\frac{1}{2}\right]\)
\(A=2\left[\left(x-2\right)^2-\frac{7}{2}\right]\)
\(A=2\left(x-2\right)^2-7\ge7\forall x\)
dấu " = " xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
vậy MIN A = 7 khi \(x=2\)
\(B=-5x^2-4x+1\)
\(B=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)
\(B=-5\left(x^2+2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}-\frac{1}{5}\right)\)
\(B=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{9}{25}\right]\)
\(B=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\forall x\)
dấu \("="\) xảy ra khi \(x+\frac{2}{5}=0\Leftrightarrow x=\frac{-2}{5}\)
vậy MIn B = \(\frac{9}{5}\) khi \(x=\frac{-2}{5}\)
còn lại làm tương tự nhé
Ta có :
\(A=2x^2-8x+1\)
\(A=\left(x^2-4x+4\right)+\left(x^2-4x+4\right)-7\)
\(A=2\left(x^2-4x+4\right)-7\)
\(A=2\left(x-2\right)^2-7\ge-7\)
Dấu "=" xảy ra khi và chỉ khi \(2\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTNN của \(A\) là \(-7\) khi \(x=2\)
Chúc bạn học tốt ~
Ta có : \(C=\frac{2}{6x-5-9x^2}\)
\(\Leftrightarrow C=-\frac{2}{9x^2-6x+5}\)
\(\Leftrightarrow C=-\frac{2}{\left(3x-1\right)^2+4}\)
Để C đạt giá trị nhỏ nhất
\(\Leftrightarrow\left(3x-1\right)^2+4\)đạt giá trị nhỏ nhất
Ta có : \(\left(3x-1\right)^2+4\ge4\)
Dấu " = " xảy ra :
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(Min_C=-\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)
Một mảnh đất hình vuông có cạnh dài 12m. Người ta chia mảnh đất thành hai hình chữ nhật để làm sân và xây nhà. Diện tích làng Sơn chiếm 1/3 diện tích mảnh đất. Tính chu vi và diện tích phần đất để xây nhà?
1) \(M=9x^2-6x+6=\left(9x^2-6x+1\right)+5=\left(3x-1\right)^2+5\ge5\)
\(minM=5\Leftrightarrow x=\dfrac{1}{3}\)
2) \(M=5-2x-x^2=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)
\(maxM=6\Leftrightarrow x=-1\)
3) \(N=5+6x-9x^2=-\left(9x^2-6x+1\right)+6=-\left(3x-1\right)^2+6\le6\)
\(maxN=6\Leftrightarrow x=\dfrac{1}{3}\)
để A nhỏ nhất thì 6x - 5 - 9x2 lớn nhất
ta có 6x - 5 - 9x2 = - ( 9x2 - 6x + 5 )
= -( 3x - 1 ) 2 + 4
= 4 - (3x - 1 )2
ta có (3x - 1)2 lớn hơn hoặc = 0 với mọi x
trường hợp dấu bằng xảy ra cũng là trường hợp để 4 - (3x - 1 )2 lớn nhất
ta có với (3x -1)2 = 0 tức x = 1/3 thì 4 - (3x - 1 )2 = 4
khi đó A = \(\frac{2}{6x-5-9x^2}=\frac{2}{4}=\frac{1}{2}\)
vậy A nhỏ nhất = 1/2 khi và chỉ khi x=1/3
a/ A=\(\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)
A xác định khi 3x-1 #0 <=> x khác 1/3
b/ x=8 => A=\(\frac{8}{3.8-1}=\frac{8}{23}\)
c/ A\(\le0\)Khi:
+/\(\hept{\begin{cases}x\ge0\\3x-1\le0\end{cases}}< =>0\le x\le\frac{1}{3}\)
+/ \(\hept{\begin{cases}x\le0\\3x-1\ge0\end{cases}}\)Không có giá trị x phù hợp
Vậy để A<0 <=> \(0\le x\le\frac{1}{3}\)
a,\(\frac{3x^2-x}{9x^2-6x+1}=\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)
Vậy đk xác định của phân thức là \(x\ne\frac{1}{3}\)
b, Ta thay x=8
\(\frac{x}{3x-1}=\frac{8}{3.8-1}=\frac{8}{23}\)
c, x<0
\(\Rightarrow\frac{x}{3x-1}=-1\Leftrightarrow x=0,25\)
Ta có: \(E=9x^2+6x-1\)
\(=9x^2+6x+1-2\)
\(=\left(3x+1\right)^2-2\ge-2\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{3}\)
\(F=\left(3x\right)^2+2.3x.1+1-2=\left(3x+1\right)^2-2\ge-2\)
Dấu = xảy ra ⇔ \(3x+1=0\Rightarrow x=\dfrac{-1}{3}\)
Vậy min của F là -2
\(C=9x^2+y^2+25-6xy-2y+6x\)
\(=\left(3x^2\right)+y^2+1^2-2.3x.y-2.y.1+2.3x.1+24\)
\(=\left(3x-y+1\right)^2+24\)
\(=\left(3x-y-2+3\right)^2+24=3^2+24=33\)
\\(C=\frac{9x^2-6x+4}{9x^2-6x+2}-1=\frac{\left(3x-2\right)^2}{9x^2-6x+2}-1\ge1\)
Do đó min C =1 khi x=2/3