Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 2021-x = a
2023-x=b
2x-4044=c
ta có a + b + c=2021-x+2023-x+2x-4044=0
suy ra a + b = -c
suy ra (a+b)^3 =-c^3
ta có a^3 + b^3 + c^3=(a+b)^3 -3ab(a+b) + c^3 = -c^3 +3abc +c^3 = 3abc
ta có (2021-x)^3 + (2023-x)^3 + (2x-4044)^3 = 0
=> 3(2021-x)(2023-x)(2x-4044)=0
=> th 1 x = 2021, th 2 x = 2023; th3 x = 2022
\(ĐKXĐ:x\ne0;x\ne2\)
\(\frac{4x^2-4x^3+x^4}{x^3-2x^2}=-2\)
\(\Leftrightarrow4x^2-4x^3+x^4=-2\left(x^3-2x^2\right)\)
\(\Leftrightarrow4x^2-4x^3+x^4=-2x^3+4x^2\)
\(\Leftrightarrow x^4-2x^3=0\Leftrightarrow x^3\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\left(ktm\right)\)
Vậy không có x để phân thức bằng -2
Ta có : \(\frac{4x^2-4x^3+x^4}{x^3-2x^2}=-2\)
( ĐKXĐ : \(x\ne0,x\ne\pm\sqrt{2}\) )
\(\Leftrightarrow\frac{4x^2-4x^3+x^4}{x^3-2x^2}+2=0\)
\(\Leftrightarrow4x^2-4x^3+x^4+2\left(x^3-2x^2\right)=0\)
\(\Leftrightarrow-2x^3+x^4=0\)
\(\Leftrightarrow x^3\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\) ( Loại \(x=0\) không thỏa mãn ĐKXĐ )
Vậy : \(x=2\) thỏa mãn đề.
3 - 2x = 3(x+1)-x-2
3-2x-3(x+1)+x+2=0
3-2x-3x-3+x+2=0
-4x+2=0
-4x=-2
x=\(\frac{-2}{-4}\)
x=\(\frac{1}{2}\)
\(\frac{4x^2-4x^3+x^4}{x^3-2x^2}=-2\) ( ĐKXĐ : \(x\ne0,x\ne2\) )
\(\Leftrightarrow4x^2-4x^3+x^4+2\left(x^3-2x^2\right)=0\)
\(\Leftrightarrow x^4-2x^3=0\)
\(\Leftrightarrow x^3\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\) ( Loại do không thỏa mãn ĐKXĐ )
Vậy : không có giá trị của x thỏa mãn đề.
\((2x-1)^2+(x+3)^2-5(x+7)(x-7)=0\)
\(< =>4x^2-4x+1+x^2+6x+9-5\left(x^2-7^2\right)=0\\ < =>4x^2-4x+1+x^2+6x+9-5x^2+245=0\\ < =>2x+255=0\\ < =>2x=-255=>x=\dfrac{-255}{2}\)
Vậy \(x=\dfrac{-255}{2}\)
\(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Rightarrow2x+255=0\Rightarrow2x=-255\Rightarrow x=-\dfrac{255}{2}\)
Phân tích đa thức:
x^4 + 2x^3 - x^2 - 2x + 1
= (x^4 + 2x^3) - (x^2 + 2x) + 1
= x^3(x + 2) - x(x + 2) + 1
= (x^3 - x)(x + 2) + 1
= x(x^2 - 1)(x + 2) + 1
= x(x - 1)(x + 1)(x + 2) + 1
Vậy phương trình đã cho có các nghiệm là x = -2, x = -1, x = 0 và x = 1.
\(\Leftrightarrow\left(x-2021\right)\left(x-5\right)-\left(x-2021\right)=0\\ \Leftrightarrow\left(x-2021\right)\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2021\\x=6\end{matrix}\right.\)
TA CÓ BỔ ĐỀ SAU:
\(a^3+b^3=a^3+3a^2b+3ab^2+b^3-3ab.\left(a+b\right)=\left(a+b\right)^3-3ab.\left(a+b\right)\)
ta có:
\(\left(x-2023\right)^3+\left(x-2021\right)^3=\left(2x-4044\right)^3\)
\(\Leftrightarrow\left(x-2023+x-2021\right)^3-3.\left(x-2023\right).\left(x-2021\right).\left(x-2023+x-2021\right)=\left(2x-4044\right)^3\)
\(\Leftrightarrow\left(2x-4044\right)^3-3.\left(x-2023\right).\left(x-2021\right).\left(2x-4044\right)=\left(2x-4044\right)^3\)
\(\Leftrightarrow\left(2x-4044\right)^3-\left(2x-4044\right)^3=3.\left(x-2023\right).\left(x-2021\right).\left(2x-4044\right)\)
\(\Leftrightarrow3.\left(x-2023\right).\left(x-2021\right).\left(2x-4044\right)=0\)
\(\Leftrightarrow x-2023=0;x-2021=0;2x-4044=0\)
\(\Rightarrow\) x=2023 hoạc x=2021 hoặc x=2022 là nghiệm của phương trình.
vậy................