Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+3x+2\) =\(x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\frac{5}{4}\)=\(\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu "=" xảy ra <=>\(x+\frac{3}{2}=0\)<=>\(x=-\frac{3}{2}\)
Bài 2:
a) \(x^2-4x+y^2+2y+5=0\)
=> \(\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
=>\(\left(x-2\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\)nên:
=>\(\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
b)\(2x^2+y^2-2xy+10x+25=0\)
=>\(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
=>\(\left(x-y\right)^2+\left(x+5\right)^2=0\)
Tới đây thì dễ nhá !
Điều kiện <=> y2 =1 -(x-2)2 \(\ge0< =>\left(x-2\right)^2\le1< =>-1\le x-2\le1< =>1\le x\le3.\)
m = x2+y2 = x2 +1 -(x-2)2 = 4x -3
=> 4.1-3 \(\le m\le\)4.3-3 <=> \(1\le m\le9\)
m Min =1 khi x =1; m Max= 9 khi x =3
i love U không giải đâu ,đừng có ****,bạn ấy luôn đi xin **** người khác mà không thèm giải bài nào