\(\tan\alpha=\frac{8}{15}.\) Tìm ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

Bạn sử dụng 2 CT này để tìm nhé
\(1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\)
\(\Rightarrow1+\tan^2\alpha=\frac{1}{1-\sin^2\alpha}\)

21 tháng 8 2018

Cạnh huyền là: 82+152=172

\(\Rightarrow\)\(\sin\)\(\alpha\)=\(\frac{8}{17}\)

\(\Rightarrow\)\(\cos\)\(\alpha\)=\(\frac{15}{17}\)

NV
29 tháng 8 2020

\(M=\frac{\frac{sina}{cosa}+\frac{cosa}{cosa}}{\frac{sina}{cosa}-\frac{cosa}{cosa}}=\frac{tana+1}{tana-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=...\)

\(N=\frac{\frac{sina.cosa}{cos^2a}}{\frac{sin^2a}{cos^2a}-\frac{cos^2a}{cos^2a}}=\frac{tana}{tan^2a-1}=...\) (thay số bấm máy)

\(P=\frac{\frac{sin^3a}{cos^3a}+\frac{cos^3a}{cos^3a}}{\frac{2sina.cos^2a}{cos^3a}+\frac{cosa.sin^2a}{cos^3a}}=\frac{tan^3a+1}{2tana+tan^2a}=...\)

13 tháng 9 2020

a) \(\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos a}\)

\(\Leftrightarrow\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=\sin^2\alpha\)

\(\Leftrightarrow1-\cos^2\alpha=\sin^2\alpha\)

\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha=1\)( luôn đúng )

\(\Rightarrow\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}\)

a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)

                  \(\frac{1}{3}\)\(\frac{\sin\alpha}{\cos\alpha}\)

                    \(\cos\alpha\)= 3 \(\sin\alpha\)

ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)\(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)\(\frac{4\sin\alpha}{2\sin\alpha}\)\(2\)

#mã mã#

24 tháng 6 2019

a/ \(\sin\alpha=\frac{C_đ}{C_h}\)

\(\cos\alpha=\frac{C_k}{C_h}\)

\(\Rightarrow\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{C_đ}{C_h}}{\frac{C_k}{C_h}}=\frac{C_đ}{C_k}=\tan\alpha\)

b/ \(\frac{\cos\alpha}{\sin\alpha}=\frac{\frac{C_k}{C_h}}{\frac{C_đ}{C_h}}=\frac{C_k}{C_đ}=\cot\alpha\)

c/ \(\tan\alpha.\cot\alpha=\frac{C_đ}{C_k}.\frac{C_k}{C_đ}=1\)

d/ \(\sin^2\alpha=\frac{C_đ^2}{C_h^2}\)

\(\cos^2\alpha=\frac{C_k^2}{C_h^2}\)

\(\Rightarrow\sin^2\alpha+\cos^2\alpha=\frac{C_đ^2+C_k^2}{C_h^2}=\frac{C_h^2}{C_h^2}=1\)

P/s: hok trc lp 9 hay sao mà lm bài bài này?

25 tháng 6 2019

uk. mk học trc lp 9