Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do 2 đầu của R5 nối cùng một điện thế nên ta chập lại với nhau (mạch không còn R5).
Sơ đồ mạch điện lúc này: R1 nt (R2 // R3 // R4) nt R6
Ta có: \(\dfrac{1}{R_{234}}=\dfrac{1}{R_2}+\dfrac{1}{R_3}+\dfrac{1}{R_4}\)
\(\Rightarrow \dfrac{1}{R_{234}}=\dfrac{1}{9}+\dfrac{1}{18}+\dfrac{1}{6}\)
\(\Rightarrow R_{234}= 3 \Omega\)
Điện trở tương đương của mạch:
\(R_{tđ} = R_1+R_{234}+R_6=3+3+6=12\Omega\)
a)\(\left\{{}\begin{matrix}\xi_b=\xi_1+\xi_2=6+3=9V\\r_b=r_1+r_2=2+1=3\Omega\end{matrix}\right.\)
b)CTM ngoài: \(R_1nt\left(R_2//R_3\right)\)
\(R_{23}=\dfrac{R_2\cdot R_3}{R_2+R_3}=\dfrac{2\cdot8}{2+8}=1,6\Omega\)
\(R_N=R_1+R_{23}=4,4+1,6=6\Omega\)
c)\(I_1=I_{23}=I=\dfrac{\xi_b}{r_b+R_N}=\dfrac{9}{3+6}=1A\)
\(U_1=I_1\cdot R_1=1\cdot4,4=4,4V\)
\(U_2=U_3=U_{23}=I_{23}\cdot R_{23}=1\cdot1,6=1,6V\)
1, a, \(F=k.\dfrac{\left|q_1q_2\right|}{0,06}=...\)
b, ta thấy \(MA+AB=MB\)
\(E_1=k.\dfrac{\left|q_1\right|}{MA^2}\)
\(E_2=k\dfrac{\left|q_2\right|}{MB^2}\)
\(E=\left|E_1-E_2\right|\)
a,\(R_đ=\dfrac{12^2}{6}=24\left(\Omega\right)\)
\(R_{tđ}=\dfrac{24.12}{12+24}+12=20\left(\Omega\right)\)
\(I.r+20.I=15\Rightarrow I=0,6\left(A\right)\)
\(U=0,6.20=12\left(V\right)\)
\(\Rightarrow I_đ=\dfrac{12-0,6.8}{24}=0,3\left(A\right)\)
\(I_{đđm}=\dfrac{6}{12}=0,5\)
b, P nguồn là \(E.I\)
mạch \(0,6^2.20\)
đấy là ban đầu nhá bh bn đặt R1=x giữ nguyên P nguồn xong tính Rtđ để tìm P mạch thỏa mãn bài
so sánh tự đưa ra kết luận
@Tester, @Demo abc9 mau xuất hiện