Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/x-2=2x-1/x-2 - x
<=> 3/x-2=2x-1/x-2 - x^2-2x/x-2
<=> 3= 2x-1-x^2+2x
<=>x^2-4x+4=0
=> (x-2)^2=0
=> x=2
x(x-1)=1-x2
x2-x=1-x2
2x2-x-1=0
\(\hept{\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}}\)
A = ( x - 2 )2 + 5
= ( x - 2 ) 2 + 5 > hoặc = 5
=> GTNN là 5
B = x2+ 2x + 3
= x2 + 2 .x . 1 + 1 + 2
= ( x + 1 )2 + 2 >hoặc = 2
=> GTNN là 2
\(A=\left(x-2\right)^2+5\)
vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+5\ge5\)
vậy min A=5 khi x=2
\(B=x^2+2x+3\)
\(=x^2+2x+1+2\)
\(=\left(x+1\right)^2+2\ge2\)
vậy Min B=2 khi x=-1
\(2x^2+6x-8=0\)
<=> \(2x^2-2x+8x-8=0\)
<=> \(2x\left(x-1\right)+8\left(x-1\right)=0\)
<=> \(\left(2x+8\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}2x+8=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-4\\x=1\end{cases}}\)
\(2x^2-x-1=0\)
<=> \(2x^2-2x+x-1=0\)
<=> \(2x\left(x-1\right)+\left(x-1\right)=0\)
<=> \(\left(2x+1\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}2x+1=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)
\(4x^2-5x-9=0\)
<=> \(4x^2+4x-9x-9=0\)
<=> \(4x\left(x+1\right)-9\left(x+1\right)=0\)
<=> \(\left(4x-9\right)\left(x+1\right)=0\)
<=> \(\hept{\begin{cases}4x-9=0\\x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}\)
học tốt
\(2x^2+6x-8=0\)
\(< =>2x^2-2x+8x-8=0\)
\(\Leftrightarrow2x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow2x+8=0\)hoặc \(x-1=0\)
\(\Leftrightarrow x=-4\)hoặc \(x=1\)
\(\left(x-3\right)^2+\frac{1}{2}=\left(x-1\right)\cdot\left(x+1\right)\)
\(x^2-6x+9+\frac{1}{2}=x^2-1\)
\(x^2-6x+9\frac{1}{2}=x^2-1\)
\(x^2-6x-x^2=-1-9\frac{1}{2}\)
\(\left(x^2-x^2\right)-6x=-10\frac{1}{2}\)
\(-6x=-10\frac{1}{2}\)
\(x=-10\frac{1}{2}:\left(-6\right)\)
\(x=1\frac{3}{4}\)
(x-3)^2 +1/2= (x-1)*(x+1)
\(\Leftrightarrow x^2-6x+\frac{19}{2}=x^2-1\)
\(\Leftrightarrow x^2-6x+\frac{19}{2}-x^2+1=0\)
\(\Leftrightarrow\left(x^2-x^2\right)+\frac{19}{2}+1-6x=0\)
\(\Leftrightarrow\frac{21}{2}-6x=0\)
\(\Leftrightarrow\frac{21}{2}-\frac{12x}{2}=0\)
\(\Leftrightarrow-\frac{3\left(4x-7\right)}{2}=0\)
\(\Leftrightarrow3\left(4x-7\right)=0\)
\(\Leftrightarrow4x-7=0\)
\(\Leftrightarrow4x=7\)
\(\Leftrightarrow x=\frac{7}{4}\)
Với đề bài và đã có x ta chỉ cần thay x vào là được :
\(101^3-3.101^2+3.101-1=\)
\(97^3+9.97^2+27.97+27=\)
Dùng hằng đẳng thức đi bạn :)
a)\(x^3-3x^2+3x-1=\left(x-1\right)^3=\left(101-1\right)^3=100^3=1000000\)
b)\(x^3+9x^2+27x+27=\left(x+3\right)^3=\left(97+3\right)^3=100^3=1000000\)