Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Thay x=1 và y=5 vào (d), ta được:
b+2=5
hay b=3
Câu 1:
a: \(2\sqrt{9}+6\sqrt{4}-3\sqrt{25}\)
\(=2\cdot3+6\cdot2-3\cdot5\)
\(=6+12-15=3\)
b: \(\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}-\sqrt{3}-\sqrt{2}\)
\(=-2\sqrt{2}\)
9) We have CE = BC - BE = x - y
In \(\Delta ABC\), we have \(E\in BC\), \(D\in AB\)and ED//CA, so: \(\frac{AD}{BD}=\frac{CE}{BE}\)(Thales' theorem)
\(\Rightarrow\frac{b}{a}=\frac{x-y}{y}=\frac{x}{y}-1\)\(\Rightarrow b=a\left(\frac{x}{y}-1\right)=\frac{ax}{y}-a\)
So we choose A as the right answer.
a) Thay m=1 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\3x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)
a: Thay x=0 và y=5 vào (d), ta được:
m*0+5=5
=>5=5(đúng)
=>ĐPCM
b: x1<x2; |x1|>|x2|
=>x1*x2<0
PTHĐGĐ là:
x^2-mx-5=0
Vì a*c<0
nên x1,x2 luôn trái dấu
=>Với mọi m
Phương trình ax2 + bx + c = 0 vô nghiệm => Δ = b2 - 4ac > 0 (1)
Xét phương trình ax2 - bx + c = 0 có Δ = (-b)2 - 4ac = b2 - 4ac > 0 [ theo (1) ]
=> Phương trình ax2 - bc + c = 0 vô nghiệm => Chọn D