
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có 2 TH:
+ Th1: \(x-2=x\)
=>\(x-x=2\)
=>\(0=2\)( Vô lý, loại)
+ Th2: \(x-2=-x\)
=>\(x+x=2\)
=>\(2x=2\)
=>\(x=1\)
Vậy x=1
\(|x-2|=x\)
\(\Rightarrow TH1:x-2=x\)
\(x-x=2\)
\(0=2\)
\(\Rightarrow x\in\varnothing\)
\(TH2:x-2=-x\)
\(x+x=2\)
\(2x=2\)
\(\Rightarrow x=1\)
Vậy \(x\in\left\{\varnothing;1\right\}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{y+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{x+y+z}{y+z-5+x+z+3+x+y+2}=\frac{x+y+z}{2x+2y+2z}=\frac12\)
=>\(\begin{cases}y+z-5=2x\\ x+z+3=2y\\ x+y+2=2z\end{cases}\Rightarrow\begin{cases}y+z=2x+5\\ y+z=2y-3\\ x+y=2z-2\end{cases}\)
\(\frac{x}{y+z-5}=\frac12\left(x+y+z\right)\)
=>\(\frac12\left(x+y+z\right)=\frac12\)
=>x+y+z=1
*Ta có: x+y+z=1
=>z+2z-2=1
=>3z-2=1
=>3z=3
=>z=1
*Ta có: x+y+z=1
=>y+2y-3=1
=>3y=4
=>\(y=\frac43\)
*Ta có: x+y+z=1
=>x+2x+5=1
=>3x+5=1
=>3x=-4
=>\(x=-\frac43\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{y+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{x+y+z}{y+z-5+x+z+3+x+y+2}=\frac{x+y+z}{2x+2y+2z}=\frac12\)
=>\(\begin{cases}y+z-5=2x\\ x+z+3=2y\\ x+y+2=2z\end{cases}\Rightarrow\begin{cases}y+z=2x+5\\ y+z=2y-3\\ x+y=2z-2\end{cases}\)
\(\frac{x}{y+z-5}=\frac12\left(x+y+z\right)\)
=>\(\frac12\left(x+y+z\right)=\frac12\)
=>x+y+z=1
*Ta có: x+y+z=1
=>z+2z-2=1
=>3z-2=1
=>3z=3
=>z=1
*Ta có: x+y+z=1
=>y+2y-3=1
=>3y=4
=>\(y=\frac43\)
*Ta có: x+y+z=1
=>x+2x+5=1
=>3x+5=1
=>3x=-4
=>\(x=-\frac43\)

Bạn ơi mình hiểu rồi , làm cho nó cùng mũ rồi bỏ mũ luôn đúng không ^^
Cám ơn bạn nhiều lắm ^^
Chúc bạn học tốt

Ta có:
\(\frac{x}{2}-\frac{3}{y}=\frac{5}{4}\)
hay \(\frac{2x}{4}-\frac{3}{y}=\frac{5}{4}\)
Suy ra \(\frac{3}{y}=\frac{2x-5}{4}\)
\(\Rightarrow3\cdot4=\left(2x-5\right)y\)
hay \(\left(2x-5\right)y=12\)
Đến đây bạn tự lập bảng giá trị nhé!

a) (x+2) + (x+3) + (x+5) = 25
3x + 10 = 25
3x = 15
x = 5
b) 62 - 3.(x+2) = 52.2
62 - 3.(x+2) = 50
3.(x+2) = 12
x+2 = 4
x = 2
c) 25 - (2x+3) = 16
25 - 2x - 3 = 16
22 - 2x = 16
2x =6
x = 3

Ta có:\(\frac{a}{b}=\frac{a+c}{b+c}\)
\(\Leftrightarrow a\left(b+c\right)=b\left(a+c\right)\)
\(\Leftrightarrow ab+ac=ab+bc\)
\(\Leftrightarrow ac=bc\)
\(\Leftrightarrow a=b\)
có cái nịt