Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4\sqrt{2}x^2-6x-\sqrt{2}=0\) \(0\)
\(\left(a=4\sqrt{2};b=-6;b'=-3;c=-\sqrt{2}\right)\)
\(\Delta'=b'^2-ac\)
\(=\left(-3\right)^2-4.\left(-\sqrt{2}\right)\)
\(=9+4\sqrt{2}\)
\(\sqrt{\Delta}=\sqrt{9+4\sqrt{2}}\)
Vay : phương trình có 2 nghiệp phân biệt
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{3+\sqrt{9+4\sqrt{2}}}{4\sqrt{2}}\)
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{3-\sqrt{9+4\sqrt{2}}}{4\sqrt{2}}\)
Đặt \(a=\sqrt{2x^2+16x+18};b=\sqrt{x^2-1}\left(a,b\ge0\right);\)
Ta có: \(a+b=\sqrt{a^2+2b^2}\Rightarrow a^2+2ab+b^2=a^2+2b^2\)
\(\Leftrightarrow b\left(2a-b\right)=0\)
TH1: \(\sqrt{x^2-1}=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}\left(TM\right)}\)
TH2: \(2\sqrt{2x^2+16x+18}=\sqrt{x^2-1}\Leftrightarrow7x^2+64x+72=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-32+3\sqrt{57}}{7}\left(TM\right)\\x=\frac{-32-3\sqrt{57}}{7}\left(KTM\right)\end{cases}}\)
HPT: \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=8\\x-y=12\end{cases}}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{x-12}=8\)
\(\Leftrightarrow\frac{x-12+x-8x^2+96x}{x^2-12x}=0\)
\(\Leftrightarrow8x^2-98x+12=0\)
\(\Leftrightarrow4x^2-49x+6=0\)
\(\Leftrightarrow4\left(x-\frac{49}{8}\right)^2=\frac{2305}{16}\)
\(\Leftrightarrow x=\pm\frac{\sqrt{2305}+49}{8}\)'
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{49+\sqrt{2305}}{8}\Leftrightarrow y=\frac{-47+\sqrt{2305}}{8}\\x=\frac{49-\sqrt{2305}}{8}\Leftrightarrow y=-\frac{47+\sqrt{2305}}{8}\end{cases}}\)
Kết luận nghiệm .....
p/s : nghiệm xấu quá đi :(((
nhập PT vào máy tính, sử dụng dầu "=" ô nút CALC.
sau khi nhập xong, nhấn SHIFT,CALC, rồi nhấn dấu =
Ta được x=-1,322875656
\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2=0\)
\(\Rightarrow x^2+2\left(x^2+2x+1\right)+3\left(x^2+4+4x\right)+4\left(x^2+6x+9\right)=0\)
\(\Rightarrow x^2+2x^2+4x+2+3x^2+12+12x+4x^2+24x+36=0\)
\(\Rightarrow10x^2+40x+50=0\)
\(\Rightarrow10\left(x^2+4x+5\right)=0\)
\(\Rightarrow x^2+4x+5=0\)
\(\Rightarrow\left(x^2+4x+2\right)+3=0\)
\(\Rightarrow\left(x+2\right)^2=-3\)
Mà \(\left(x+2\right)^2\ge0\)với mọi \(x\)
Vậy...
Ai giỏi toán giúp mình câu này với
giải phương trình: \(\left(2x^2-6x+5\right)\left(2x-3\right)^2=1\)
\(\left(2x^2-6x+5\right)\left(2x-3\right)^2=1\)
\(\Leftrightarrow\left[2\left(2x^2-6x+5\right)\right].\left(2x-3\right)^2=2.1\)
\(\Leftrightarrow\left(4x^2-12x+10\right)\left(2x-3\right)^2=2\)
\(\Leftrightarrow\left[\left(2x\right)^2-2.2x.3+3^2+1\right]\left(2x-3\right)^2=2\)
\(\Leftrightarrow\left[\left(2x-3\right)^2+1\right]\left(2x-3\right)^2=2\) (1)
Đặt \(\left(2x-3\right)^2=c\left(c\ge0\right)\)
Suy ra (1) trở thành: \(c\left(c+1\right)=2\)
\(\Leftrightarrow\left(c-1\right)\left(c+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}c-1=0\\c+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}c=1\\c=-2\end{cases}}}\)
Vì \(c\ge1\) nên c = 1
Hay \(\Rightarrow\left(2x-3\right)^2=1\)
\(\Rightarrow\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}}\)
Vậy phương trình có hai nghiệm là x = 1 hoặc x = 2
P/s: Bài giải có nhiều sai sót, chị xem lại giúp em.
P/s: Chữ (h) nghĩa là "hoặc"
\(\left(2x^2-6x+5\right)\left(2x-3\right)^2=1\)
Do 1 là số dương nên \(\left(2x^2-6x+5\right)\) và \(\left(2x-3\right)^2\) đồng dấu.
Mà \(\left(2x-3\right)^2\ge0\forall x\) nên chỉ cần xét 1 trường hợp:
\(\hept{\begin{cases}2x^2-6x+5=1\\\left(2x-3\right)^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x^2-6x+4=0\\2x-3=1..\left(h\right)..2x-3=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\left(x-2\right)\left(x-1\right)=0\\2x=4...\left(h\right)...2x=2\end{cases}}\Leftrightarrow x=2...\left(h\right)...x=1\)
Vậy x = 2 hoặc x = 1
Khi \(x< -5\) thì\(|x+5|=-x-5\)
\(\Leftrightarrow-x-5=2x-18\)
\(\Leftrightarrow-3x=-13\)
\(\Leftrightarrow x=\frac{13}{3}\)(KTMĐK)
Khi \(x\ge-5\)thì \(|x+5|=x+5\)
\(\Leftrightarrow x+5=2x-18\)
\(\Leftrightarrow-x=-23\)
\(\Leftrightarrow x=23\)(TMĐK)
Vậy:\(S=\left\{23\right\}\)
Tao deo biet