Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=\dfrac{A}{B}=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\left(đk:x>0,x\ne1\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{x-1}{\sqrt{x}+1}=\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x-1\right)}=\dfrac{x-1}{\sqrt{x}}\)
b) \(P\sqrt{x}=m+\sqrt{x}\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}}.\sqrt{x}=m+\sqrt[]{x}\)
\(\Leftrightarrow x-1=m+\sqrt{x}\)
\(\Leftrightarrow m=x-\sqrt{x}-1\)
Lời giải:
Dễ thấy $2\sqrt{x}+3>0; 7>0$ nên $A>0$
Mặt khác:
$2\sqrt{x}\geq 0\Rightarrow 2\sqrt{x}+3\geq 3$
$\Rightarrow A=\frac{7}{2\sqrt{x}+3}\leq \frac{7}{3}$
Vậy $0< A< \frac{7}{3}$
$A\in\mathbb{Z}\Leftrightarrow A\in\left\{1;2\right\}$
$\Leftrightarrow \frac{7}{2\sqrt{x}+3}\in \left\{1;2\right\}$
$\Leftrightarrow x\in\left\{4; \frac{1}{16}\right\}$
Để A là số nguyên thì \(7⋮2\sqrt{x}+3\)
\(\Leftrightarrow2\sqrt{x}+3=7\)
\(\Leftrightarrow2\sqrt{x}=4\)
hay x=4
ĐK: \(x\ge0;x\ne\dfrac{1}{4}\)
\(A=\dfrac{4\sqrt{x}+3}{2\sqrt{x}-1}\in Z\)
\(\Leftrightarrow\dfrac{2\left(2\sqrt{x}-1\right)+5}{2\sqrt{x}-1}\in Z\)
\(\Leftrightarrow2+\dfrac{5}{2\sqrt{x}-1}\in Z\)
\(\Leftrightarrow2\sqrt{x}-1\inƯ_5=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow2\sqrt{x}\in\left\{0;2;6\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1;3\right\}\)
\(\Leftrightarrow x\in\left\{0;1;9\right\}\)
Để A là số nguyên thì \(4\sqrt{x}+3⋮2\sqrt{x}-1\)
\(\Leftrightarrow5⋮2\sqrt{x}-1\)
\(\Leftrightarrow2\sqrt{x}-1\in\left\{-1;1;5\right\}\)
\(\Leftrightarrow2\sqrt{x}\in\left\{0;2;6\right\}\)
hay \(x\in\left\{0;1;9\right\}\)
B=\(\left(\frac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)\(-\frac{\sqrt{x}}{x+\sqrt{x}+1}\))\(\left(\frac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)=\(\left(\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)\(\left(x-2\sqrt{x}+1\right)\)=\(\sqrt{x}-1\)
2: Thay x=1 và y=-4 vào (d), ta được:
2m+2=-4
hay m=-3
Nãy ghi nhầm =="
a)Hđ gđ là nghiệm pt
`x^2=2x+2m+1`
`<=>x^2-2x-2m-1=0`
Thay `m=1` vào pt ta có:
`x^2-2x-2-1=0`
`<=>x^2-2x-3=0`
`a-b+c=0`
`=>x_1=-1,x_2=3`
`=>y_1=1,y_2=9`
`=>(-1,1),(3,9)`
Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`
b)
Hđ gđ là nghiệm pt
`x^2=2x+2m+1`
`<=>x^2-2x-2m-1=0`
PT có 2 nghiệm pb
`<=>Delta'>0`
`<=>1+2m+1>0`
`<=>2m> -2`
`<=>m> 01`
Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`
Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`
`=>x_1^2+x_2^2=14`
`<=>(x_1+x_2)^2-2x_1.x_2=14`
`<=>4-2(-2m-1)=14`
`<=>4+2(2m+1)=14`
`<=>2(2m+1)=10`
`<=>2m+1=5`
`<=>2m=4`
`<=>m=2(tm)`
Vậy `m=2` thì ....
\(P=A\left(3-x+2\sqrt{x}\right)=A\left(3-\sqrt{x}\right)\left(\sqrt{x}+1\right)\\ P=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\left(3-\sqrt{x}\right)\left(\sqrt{x}+1\right)=\left(2\sqrt{x}-1\right)\left(3-\sqrt{x}\right)\\ P=6\sqrt{x}-2x-3+\sqrt{x}=-2x+7\sqrt{x}-3\\ P=-2\left(x-2\cdot\dfrac{7}{4}\sqrt{x}+\dfrac{49}{16}-\dfrac{49}{16}\right)-3\\ P=-2\left(\sqrt{x}-\dfrac{7}{4}\right)^2+\dfrac{49}{8}-3\le\dfrac{49}{8}-3=\dfrac{25}{8}\\ P_{max}=\dfrac{25}{8}\Leftrightarrow\sqrt{x}=\dfrac{7}{4}\Leftrightarrow x=\dfrac{49}{16}\)