loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2023

a) \(A=\left(x+5\right)^2-\left(x+3\right)^2\)

\(=\left[\left(x+5\right)-\left(x+3\right)\right]\left[\left(x+5\right)+\left(x+3\right)\right]\)

\(=\left(x+5-x-3\right)\left(x+5+x+3\right)\)

\(=2\left(2x+8\right)\)

\(=4x+16\)

b) \(B=\left(4x+1\right)^2-\left(2x+1\right)^2\)

\(=\left[\left(4x+1\right)-\left(2x+1\right)\right]\left[\left(4x+1\right)+\left(2x+1\right)\right]\)

\(=\left(4x+1-2x-1\right)\left(4x+1+2x+1\right)\)

\(=2x\left(6x+2\right)\)

\(=12x^2+4x\)

c) \(C=\left(3-4x\right)^2-\left(2x-1\right)\left(8x-9\right)\)

\(=9-24x+16x^2-16x^2+18x+8x-9\)

\(=\left(16x^2-16x^2\right)+\left(-24x+18x+8x\right)+\left(9-9\right)\)

\(=2x\)

d) \(D=\left(4+2x^2\right)-\left(1-4x\right)\left(4-x\right)\)

\(=4+2x^2-4+x+16x-4x^2\)

\(=\left(2x^2-4x^2\right)+\left(x+16x\right)+\left(4-4\right)\)

\(=-2x^2+17x\)

e) \(E=\left(2-3x\right)^2-2\left(2-3x\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left(2-3x+3x+5\right)^2\)

\(=7^2\)

\(=49\)

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Bạn cần hỗ trợ bài nào nhỉ?

NV
16 tháng 1 2024

a.

\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)

\(=\dfrac{x^2+3x+1}{x+1}\)

2.

\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)

Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)

30 tháng 1 2024

4.linda sometimes brings her home made after the class

30 tháng 1 2024

Linh 6A3(THCS Mai Đình) à

 

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Bài 4:

a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:

$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$

$\frac{DB}{DC}=\frac{D'B'}{D'C}$

$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$

$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$

Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$

Xét tam giác $ABD$ và $A'B'D'$ có:

$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$

$\frac{AB}{A'B'}=\frac{BD}{B'D'}$

$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)

b.

Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$

$\Rightarrow AD.B'C'=BC.A'D'$

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Hình bài 4:

NV
16 tháng 1 2024

ĐKXĐ: \(\left|x-2\right|-1\ne0\)

\(\Rightarrow\left|x-2\right|\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}x-2\ne1\\x-2\ne-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)