![](https://rs.olm.vn/images/avt/0.png?1311)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Các câu hỏi dưới đây có thể giống với câu hỏi trên
![](https://rs.olm.vn/images/avt/0.png?1311)
LH
0
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
LA
9 tháng 1 2024
Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:
p=O'A'OA=22=1�=�'�'��=22=1;
q=O'B'OB=13�=�'�'��=13;
r=O'C'OC=46=23�=�'�'��=46=23.
![](https://rs.olm.vn/images/avt/0.png?1311)
11 tháng 7 2016
Xin lỗi nha, bài lớp mấy vậy bn? Mk chưa học thông cảm nha, ko giúp đc òi, huhuhu...
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023
a)
Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng lớn (dần tới \( + \infty \)).
b)
Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng bé (dần tới \( - \infty \)).
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,cos\alpha=\dfrac{5}{13}\)
\(sin\alpha=\sqrt{1-cos^2\alpha}=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Leftrightarrow1+tan^2\alpha=\dfrac{1}{\left(\dfrac{5}{13}\right)^2}\Leftrightarrow tan^2\alpha=\dfrac{144}{25}\Leftrightarrow tan\alpha=\dfrac{12}{5}\)
\(cot\alpha=\dfrac{1}{tan\alpha}=1:\dfrac{12}{5}=\dfrac{5}{12}\)
\(b,sin\alpha=\dfrac{7}{12}\)
\(cos\alpha=\sqrt{1-sin^2\alpha}=\sqrt{1-\left(\dfrac{7}{12}\right)^2}=\dfrac{\sqrt{95}}{12}\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Leftrightarrow1+tan^2\alpha=\dfrac{1}{\left(\dfrac{\sqrt{95}}{12}\right)^2}\Leftrightarrow tan\alpha=\dfrac{49}{95}\)
\(cot\alpha=1:\dfrac{49}{95}=\dfrac{95}{49}\)
\(c,tan\alpha=\dfrac{15}{4}\)
\(cot\alpha=1:\dfrac{15}{4}=\dfrac{4}{15}\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Leftrightarrow1+\left(\dfrac{15}{4}\right)^2=\dfrac{1}{cos^2\alpha}\Leftrightarrow cos\alpha=\sqrt{\dfrac{16}{241}}\)
\(sin\alpha=\sqrt{1-cos^2\alpha}=\sqrt{1-\left(\sqrt{\dfrac{16}{241}}\right)^2}\approx0,97\)
\(d,cot\alpha=-\dfrac{1}{\sqrt{3}}\\ tan\alpha=1:\left(-\dfrac{1}{\sqrt{3}}\right)=-\sqrt{3}\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Leftrightarrow1+\left(-\sqrt{3}\right)^2=\dfrac{1}{cos^2\alpha}\Leftrightarrow cos\alpha=\dfrac{1}{2}\)
\(sin\alpha=\sqrt{1-\left(\dfrac{1}{2}\right)^2}=\dfrac{\sqrt{3}}{2}\)