Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\sqrt{2x+3}=1\)
\(2x+3=1\)
\(2x=1-3\)
\(2x=-2\)
\(x=-\frac{2}{2}\)
\(x=-1\)
b.
\(\left(3x-1\right)^2-25=0\)
\(\left(3x-1\right)^2=25\)
\(\left(3x-1\right)^2=\left(\pm5\right)^2\)
\(3x-1=\pm5\)
TH1:
\(3x-1=5\)
\(3x=5+1\)
\(3x=6\)
\(x=\frac{6}{3}\)
\(x=2\)
TH2:
\(3x-1=-5\)
\(3x=-5+1\)
\(3x=-4\)
\(x=-\frac{4}{3}\)
Vậy \(x=2\) hoặc \(x=-\frac{4}{3}\)
c.
\(\left(2x+4\right)\left(x^2+1\right)\left(x-2\right)=0\)
TH1:
\(2x+4=0\)
\(2x=-4\)
\(x=-\frac{4}{2}\)
\(x=-2\)
TH2:
\(x^2+1=0\)
\(x^2=-1\)
mà \(x^2\ge0\) với mọi x
=> loại
TH3:
\(x-2=0\)
\(x=2\)
Vậy \(x=2\) hoặc \(x=-2\)
\(a.\)\(=>2x+3=1\)\(=>2x=-2\)\(=>x=-1\)
\(b.\)\(=>\left(3x-1\right)^2=25\)\(=>\left(3x-1\right)^2=5^2=>3x-1=5=>3x=6=>x=2\)
\(c.\)\(=>2x+4=0\)hoac \(x^2+1=0\)hoac \(x-2=0\)
=> * 2x=4 => x= 2
* x^2=-1=> x=-1
* x = 2
\(=>x\in\left(2;-1\right)\)
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=> \(3^{n-1}+5.3^{n-1}=162\)
<=> \(3^{n-1}\left(1+5\right)=162\)
<=> \(3^{n-1}.6=162\)
<=> \(3^{n-1}=162:6\)
<=> \(3^{n-1}=27\)
<=> \(3^{n-1}=3^3\)
<=> n - 1 = 3
<=> n = 3 + 1 = 4
Câu 1
a) Từ gt=>\(\hept{\begin{cases}x-5=1-3x\\x-5=3x-1\end{cases}}\)
<=>\(\hept{\begin{cases}4x=6\\2x=-4\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)
b) Ta có: \(\hept{\begin{cases}\left(3x-1\right)^{100}\ge0,\forall x\in R\\\left(2y+1\right)^{200}\ge0,\forall x\in R\end{cases}}\)
Kết hợp với đề bài => \(\hept{\begin{cases}3x-1=0\\2y+1=0\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{1}{2}\end{cases}}\)
Bài 2
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=>\(3^{n-1}+5.3^{n-1}=162\)
<=>\(6.3^{n-1}=162\)
<=>\(3^{n-1}=27=3^3\)
<=>\(n-1=3\)
<=>\(n=4\)
b) | 3x - 4 | + | 5y + 5 | = 0
Ta có \(\hept{\begin{cases}\left|3x-4\right|\ge0\\\left|5y+5\right|\ge0\end{cases}\forall xy}\)
\(\Leftrightarrow\left|3x-4\right|+\left|5y+5\right|\ge0\forall xy\)
Do đó để tổng | 3x - 4 | + | 5y + 5 | = 0 thì \(\hept{\begin{cases}\left|3x-4\right|=0\\\left|5y+5\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x-4=0\\5y+5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x=4\\5y=-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=-1\end{cases}}\)
Vậy \(x=\frac{4}{3}\) và y= - 1
c) | x + 3 | + | x + 1 | = 3x (*1)
Ta có \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|x+1\right|\ge0\end{cases}\forall x}\)
\(\Leftrightarrow\) | x + 3 | + | x + 1 | \(\ge0\forall\)x
\(\Leftrightarrow3x\ge0\forall x\)
\(\Leftrightarrow x\ge0\)
\(\Leftrightarrow x+3>x+1>x\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=x+3\\\left|x+1\right|=x+1\end{cases}}\)
\(\Leftrightarrow\left|x+3\right|+\left|x+1\right|=x+3+x+1\)
\(\Leftrightarrow\left|x+3\right|+\left|x+1\right|=2x+4\) (*2)
Từ (*1) và (*2) <=> 2x + 4 = 3x
\(\Leftrightarrow4=3x-2x\)
\(\Leftrightarrow x=4\)
Vậy x = 4
Câu a t đang nghi sai đề
Lát t lm đc thì lm sau nhé
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
b, \(\Leftrightarrow x\left(x-3\right)+\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\2x+1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\2x=-1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{-1}{2}\end{array}\right.\)
a) |x-y|+|x-9|=0
=>
|x-y| | 0 |
|x-9| | 0 |
x | 9;-9 |
y | 9;-9 |
b) |x2-3x|+|(x+1).(x-3)|=0
xét x2-3x|=0
=> x2-3x=0
x(x-3)=0
=>x=0 hoặc x-3=0
=> x=3
|(x+1)(x-3)|=0
=> (x+1)(x-3)=0
th1 x=0
(0+1).(0-3)=0
-1.(-3)=0(loại)
th2 x=3
(3+1)(3-3)=0
4.0=0 (lấy)
=> x=0
a) 3x-1(1+5)=162
3x-1.6=162
3x-1=162:6=27=33
=>x-1=3
x=4
b) x(x+3)=0
=>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
c) Vì tích nhỏ hơn 0 nên có 1 thừa số dương và 1 thừa số âm
Có x-1>x-3
=>x-1>0 và x-3<0
=>x>1 và x<3
Vậy x=2
a) 3x-1 + 5. 3x-1 = 162
1. 3x-1 + 5. 3x-1 = 162
( 1 + 5 ) . 3x-1 = 162
6. 3x-1 = 162
3x-1 = 162 : 6
3x-1 = 27
3x-1 = 33
x - 1 =3
x = 3 + 1
x = 4