Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\sqrt{10}\cdot\sqrt{40}=\sqrt{400}=20\)
b: \(\sqrt{5}\cdot\sqrt{45}=\sqrt{225}=15\)
c: \(\sqrt{52}\cdot\sqrt{13}=\sqrt{676}=26\)
d: \(\sqrt{2}\cdot\sqrt{162}=\sqrt{324}=18\)
a: Để hàm số này làm hàm số bậc nhất thì 2m-3<>0
hay m<>3/2
a: \(\sqrt{2x+3}=5\)
\(\Leftrightarrow2x+3=25\)
hay x=11
b: \(\sqrt{\left(x-2\right)^2}=8\)
\(\Leftrightarrow\left|x-2\right|=8\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=8\\x-2=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-6\end{matrix}\right.\)
a) \(\sqrt{3+2x}=5\left(đk:x\ge-\dfrac{3}{2}\right)\)
\(\Leftrightarrow3+2x=25\Leftrightarrow x=11\left(tm\right)\)
b) \(\sqrt{\left(x-2\right)^2}=8\)
\(\Leftrightarrow\left|x-2\right|=8\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=8\\x-2=-8\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-6\end{matrix}\right.\)
c) \(đk:x\le3\)
\(\Leftrightarrow\sqrt{3-x}-3\sqrt{3-x}+5\sqrt{3-x}=6\)
\(\Leftrightarrow3\sqrt{3-x}=6\)
\(\Leftrightarrow\sqrt{3-x}=2\Leftrightarrow3-x=4\Leftrightarrow x=-1\left(tm\right)\)
d) \(đk:x\ge0\)
\(\Leftrightarrow4\sqrt{x}-6\sqrt{x}+4\sqrt{x}=5\)
\(\Leftrightarrow2\sqrt{x}=5\Leftrightarrow\sqrt{x}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{25}{4}\left(tm\right)\)
e) \(đk:x\ge-5\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\Leftrightarrow\sqrt{x+5}=2\Leftrightarrow x+5=4\Leftrightarrow x=-1\left(tm\right)\)
f) \(đk:x\ge-2\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\Leftrightarrow\sqrt{x+2}=3\Leftrightarrow x+2=9\Leftrightarrow x=7\left(tm\right)\)
1: Xét ΔABC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=30^0\)
Xét ΔABC vuông tại A có
\(BC=\dfrac{AC}{\sin60^0}\)
\(=\dfrac{32\sqrt{3}}{3}\left(cm\right)\)
hay \(AB=\dfrac{16\sqrt{3}}{3}\left(cm\right)\)
\(\sqrt{2-\sqrt{3}}=\frac{\sqrt{2}\sqrt{2-\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{2.\left(2-\sqrt{3}\right)}}{\sqrt{2}}=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\frac{\sqrt{3-2\sqrt{3}.1+1}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}=\frac{\sqrt{3}-1}{\sqrt{2}}=\frac{\sqrt{2}\sqrt{3}-\sqrt{2}}{2}\)
\(=\frac{\sqrt{6}-\sqrt{2}}{2}\)
c: \(\sqrt{3+\sqrt{8}}=\sqrt{2}+1\)
d: \(\sqrt{11+4\sqrt{6}}=2\sqrt{2}+3\)
e: \(\sqrt{14-6\sqrt{5}}=3-\sqrt{5}\)
3. a) \(M=3x-\sqrt[3]{27x^3+27x^2+9x+1}\)
\(=3x-\sqrt[3]{\left(3x\right)^3+3.\left(3x\right)^2.1+3.\left(3x\right).1^2+1}\)
\(=3x-\sqrt[3]{\left(3x+1\right)^3}\)
\(=3x-\left(3x+1\right)\)
\(=-1\)
b) \(N=\sqrt[3]{8x^3+12x^2+6x+1}-\sqrt[3]{x^3}\)
\(=\sqrt[3]{\left(2x\right)^3+3.\left(2x\right)^2.1+3.\left(2x\right).1^2+1^3}-x\)
\(=\sqrt[3]{\left(2x+1\right)^3}-x\)
\(=2x+1-x\)
\(=x+1\)
4. a) \(\sqrt[3]{\left(4-2\sqrt{3}\right)\left(\sqrt{3}-1\right)}\)
\(=\sqrt[3]{\left(\sqrt{3}-1\right)^2\left(\sqrt{3}-1\right)}\)
\(=\sqrt[3]{\left(\sqrt{3}-1\right)^3}\)
\(=\sqrt{3}-1\)
b) \(\sqrt{3+\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}}\)
\(=\sqrt{3+\sqrt{3}+\sqrt[3]{3\sqrt{3}+3.\left(\sqrt{3}\right)^2.1+3.\sqrt{3}.1^2+1}}\)
\(=\sqrt{3+\sqrt{3}+\sqrt[3]{\left(\sqrt{3}+1\right)^3}}\)
\(=\sqrt{3+\sqrt{3}+\sqrt{3}+1}\)
\(=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}+1\)(do \(\sqrt{3};1>0\))