K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

Câu 4:

1: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=\left(20a\right)^2+\left(21a\right)^2=841a^2\)

=>\(BC=\sqrt{841a^2}=29a\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot29a=\left(20a\right)^2=400a^2\)

=>\(BH=\dfrac{400}{29}a\)

2: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB=MC

Xét ΔMAB có MA=MB

nên ΔMAB cân tại M

=>\(tanBAM=tanABM=tanABC=\dfrac{AC}{AB}=\dfrac{21}{20}\)

Câu 5:

1: Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

=>BD\(\perp\)DA tại D

=>BD\(\perp\)AC tại D

Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

=>AE\(\perp\)EB tại E

=>AE\(\perp\)BC tại E

Xét ΔCAB có

AE,BD là các đường cao

AE cắt BD tại H

Do đó: H là trực tâm của ΔCAB

=>CH\(\perp\)AB

2:

Gọi giao điểm của CH với AB là K

=>CH\(\perp\)AB tại K

Ta có: ΔCDH vuông tại D

mà DF là đường trung tuyến

nên FH=FD=FC

\(\widehat{FDO}=\widehat{FDH}+\widehat{ODB}\)

\(=\widehat{OBD}+\widehat{FHD}\)

\(=\widehat{KHB}+\widehat{KBH}=90^0\)

=>FD\(\perp\)DO tại D

=>FD là tiếp tuyến của (O)

30 tháng 10 2021

Bài 1: 

b: Xét ΔBDC vuông tại B có BH là đường cao

nên \(HC\cdot HD=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HC\cdot HD=BE\cdot BC\)

6 tháng 8 2017

\(\sqrt{242}.\sqrt{26}.\sqrt{130}.\sqrt{0,9}-\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)\)

\(=\sqrt{121}.\sqrt{2}.\sqrt{2}.\sqrt{13}.\sqrt{13}.\sqrt{10}.\sqrt{0,9}-\left(2-1\right)\)

\(=11.2.13.\sqrt{9}-1=286.3-1=857\)

6 tháng 8 2017

\(\frac{3-\sqrt{6}}{\sqrt{12}-\sqrt{8}}-\frac{\sqrt{15}-\sqrt{5}}{2\sqrt{12}-4}+\frac{\sqrt{17-4\sqrt{15}}}{4}\)

\(=\frac{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\left(\sqrt{3}-\sqrt{2}\right)}-\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{4\left(\sqrt{3}-1\right)}+\frac{\sqrt{\left(2\sqrt{3}-\sqrt{5}\right)^2}}{4}\)

\(=\frac{\sqrt{3}}{2}-\frac{\sqrt{5}}{4}+\frac{2\sqrt{3}-\sqrt{5}}{4}\)

\(=\sqrt{3}-\frac{\sqrt{5}}{4}\)

28 tháng 5 2021

a) Có \(\widehat{OAM}=90^0\) => Tam giác \(OAM\) nội tiếp đường tròn đường kính OM 

=> O,A,M cùng thuộc đường tròn đường kính OM (*)

Có \(\widehat{OBM}=90^0\) => Tam giác \(OBM\) nội tiếp đường tròn đường kính OM 

=> O,B,M cùng thuộc đường tròn đường kính OM (2*)

Do N là trung điểm của PQ => \(ON\perp PQ\)( Vì trong một đt, đường kính đi qua trung điểm của một dây ko đi qua tâm thì vuông góc với dây ấy)

=> \(\widehat{ONM}=90^0\) => Tam giác \(ONM\) nội tiếp đường tròn đường kính OM 

=> O,N,M cùng thuộc đt đường kính OM (3*)

Từ (*) (2*) (3*) => O,M,N,A,B cùng thuộc đt đk OM hay đt bán kính \(\dfrac{OM}{2}\)

b) Có AM//PS (cùng vuông góc với OA)

Gọi E là gđ của PS với (O) => \(sđ\stackrel\frown{AE}=sđ\stackrel\frown{AP}\)

Có \(\widehat{PRB}=\dfrac{1}{2}\left(sđ\stackrel\frown{AE}+sđ\stackrel\frown{PB}\right)\)\(=\dfrac{1}{2}\left(sđ\stackrel\frown{AP}+sđ\stackrel\frown{PB}\right)=\dfrac{1}{2}sđ\stackrel\frown{AB}\)

=> \(\widehat{PRB}=\widehat{MAB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\)

Có BNAM nội tiếp => \(\widehat{MAB}=\widehat{MNB}\)

\(\Rightarrow\widehat{PRB}=\widehat{MNP}\) => PRNB nội tiếp

\(\Rightarrow\widehat{BRN}=\widehat{BPN}\) mà \(\widehat{BPN}=\widehat{BAQ}=\dfrac{1}{2}sđ\stackrel\frown{BQ}\)

\(\Rightarrow\widehat{BRN}=\widehat{BAQ}\) => RN//AQ hay RN // SQ mà N la trung điểm của PQ

=> RN là đường TB của tam giác PSQ

=> R là trung điểm của PS <=> PR=RS

k: \(\sqrt[3]{\left(4-2\sqrt{3}\right)\left(\sqrt{3}-1\right)}\)

\(=\sqrt[3]{\left(\sqrt{3}-1\right)^3}\)

\(=\sqrt{3}-1\)

a: \(=2\sqrt{3}-\sqrt{5}-2\sqrt{5}-2\sqrt{3}+3\left(\sqrt{5}-1\right)\)

\(=-3\sqrt{5}+3\sqrt{5}-3\)

=-3

28 tháng 10 2021

1: Ta có: \(\sqrt{3x-5}=2\)

\(\Leftrightarrow3x-5=4\)

hay x=3

2: Ta có: \(\sqrt{25\left(x-1\right)}=20\)

\(\Leftrightarrow x-1=16\)

hay x=17

6 tháng 4 2019

Câu 1, \(n^6+206⋮n^2+2\)

\(\Leftrightarrow\left(n^2\right)^3+8+198⋮n^2+2\)

\(\Leftrightarrow\left(n^2+2\right)\left(n^4-2n^2+4\right)+198⋮n^2+2\)

\(\Leftrightarrow198⋮n^2+2\)

Vì n là số nguyên dương \(\Rightarrow\hept{\begin{cases}n^2+2>2\\n^2+2\in N\end{cases}}\)

làm nốt nha -,- nhiều trường hợp quá -,-

Câu 2 , Xét hiệu \(n^5-n=n\left(n^4-1\right)\)

                                          \(=n\left(n^2-1\right)\left(n^2+1\right)\)

                                          \(=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]\)

                                          \(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)

\(\Rightarrow n^5-n⋮5\)

Áp dụng ta có \(a_1^5-a_1⋮5\)

                       \(a_2^5-a_2⋮5\)

                  .............\

                     \(a_n^5-a_n⋮5\)

\(\Rightarrow\left(a_1^5+a_2^5+...+a_n^5\right)-\left(a_1+a_2+...+a_n\right)⋮5\)

Mà \(a_1+a_2+...+a_n⋮5\Rightarrow a_1^5+a_2^5+...+a_n^5⋮5\left(Đpcm\right)\)

7 tháng 4 2019

Cảm ơn nha =))