Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b: Xét ΔBDC vuông tại B có BH là đường cao
nên \(HC\cdot HD=BH^2\left(1\right)\)
Xét ΔBHC vuông tại H có HE là đường cao
nên \(BE\cdot BC=BH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HC\cdot HD=BE\cdot BC\)
\(\sqrt{242}.\sqrt{26}.\sqrt{130}.\sqrt{0,9}-\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)\)
\(=\sqrt{121}.\sqrt{2}.\sqrt{2}.\sqrt{13}.\sqrt{13}.\sqrt{10}.\sqrt{0,9}-\left(2-1\right)\)
\(=11.2.13.\sqrt{9}-1=286.3-1=857\)
\(\frac{3-\sqrt{6}}{\sqrt{12}-\sqrt{8}}-\frac{\sqrt{15}-\sqrt{5}}{2\sqrt{12}-4}+\frac{\sqrt{17-4\sqrt{15}}}{4}\)
\(=\frac{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\left(\sqrt{3}-\sqrt{2}\right)}-\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{4\left(\sqrt{3}-1\right)}+\frac{\sqrt{\left(2\sqrt{3}-\sqrt{5}\right)^2}}{4}\)
\(=\frac{\sqrt{3}}{2}-\frac{\sqrt{5}}{4}+\frac{2\sqrt{3}-\sqrt{5}}{4}\)
\(=\sqrt{3}-\frac{\sqrt{5}}{4}\)
a) Có \(\widehat{OAM}=90^0\) => Tam giác \(OAM\) nội tiếp đường tròn đường kính OM
=> O,A,M cùng thuộc đường tròn đường kính OM (*)
Có \(\widehat{OBM}=90^0\) => Tam giác \(OBM\) nội tiếp đường tròn đường kính OM
=> O,B,M cùng thuộc đường tròn đường kính OM (2*)
Do N là trung điểm của PQ => \(ON\perp PQ\)( Vì trong một đt, đường kính đi qua trung điểm của một dây ko đi qua tâm thì vuông góc với dây ấy)
=> \(\widehat{ONM}=90^0\) => Tam giác \(ONM\) nội tiếp đường tròn đường kính OM
=> O,N,M cùng thuộc đt đường kính OM (3*)
Từ (*) (2*) (3*) => O,M,N,A,B cùng thuộc đt đk OM hay đt bán kính \(\dfrac{OM}{2}\)
b) Có AM//PS (cùng vuông góc với OA)
Gọi E là gđ của PS với (O) => \(sđ\stackrel\frown{AE}=sđ\stackrel\frown{AP}\)
Có \(\widehat{PRB}=\dfrac{1}{2}\left(sđ\stackrel\frown{AE}+sđ\stackrel\frown{PB}\right)\)\(=\dfrac{1}{2}\left(sđ\stackrel\frown{AP}+sđ\stackrel\frown{PB}\right)=\dfrac{1}{2}sđ\stackrel\frown{AB}\)
=> \(\widehat{PRB}=\widehat{MAB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\)
Có BNAM nội tiếp => \(\widehat{MAB}=\widehat{MNB}\)
\(\Rightarrow\widehat{PRB}=\widehat{MNP}\) => PRNB nội tiếp
\(\Rightarrow\widehat{BRN}=\widehat{BPN}\) mà \(\widehat{BPN}=\widehat{BAQ}=\dfrac{1}{2}sđ\stackrel\frown{BQ}\)
\(\Rightarrow\widehat{BRN}=\widehat{BAQ}\) => RN//AQ hay RN // SQ mà N la trung điểm của PQ
=> RN là đường TB của tam giác PSQ
=> R là trung điểm của PS <=> PR=RS
k: \(\sqrt[3]{\left(4-2\sqrt{3}\right)\left(\sqrt{3}-1\right)}\)
\(=\sqrt[3]{\left(\sqrt{3}-1\right)^3}\)
\(=\sqrt{3}-1\)
a: \(=2\sqrt{3}-\sqrt{5}-2\sqrt{5}-2\sqrt{3}+3\left(\sqrt{5}-1\right)\)
\(=-3\sqrt{5}+3\sqrt{5}-3\)
=-3
1: Ta có: \(\sqrt{3x-5}=2\)
\(\Leftrightarrow3x-5=4\)
hay x=3
2: Ta có: \(\sqrt{25\left(x-1\right)}=20\)
\(\Leftrightarrow x-1=16\)
hay x=17
Câu 1, \(n^6+206⋮n^2+2\)
\(\Leftrightarrow\left(n^2\right)^3+8+198⋮n^2+2\)
\(\Leftrightarrow\left(n^2+2\right)\left(n^4-2n^2+4\right)+198⋮n^2+2\)
\(\Leftrightarrow198⋮n^2+2\)
Vì n là số nguyên dương \(\Rightarrow\hept{\begin{cases}n^2+2>2\\n^2+2\in N\end{cases}}\)
làm nốt nha -,- nhiều trường hợp quá -,-
Câu 2 , Xét hiệu \(n^5-n=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)
\(\Rightarrow n^5-n⋮5\)
Áp dụng ta có \(a_1^5-a_1⋮5\)
\(a_2^5-a_2⋮5\)
.............\
\(a_n^5-a_n⋮5\)
\(\Rightarrow\left(a_1^5+a_2^5+...+a_n^5\right)-\left(a_1+a_2+...+a_n\right)⋮5\)
Mà \(a_1+a_2+...+a_n⋮5\Rightarrow a_1^5+a_2^5+...+a_n^5⋮5\left(Đpcm\right)\)
Câu 4:
1: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=\left(20a\right)^2+\left(21a\right)^2=841a^2\)
=>\(BC=\sqrt{841a^2}=29a\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot29a=\left(20a\right)^2=400a^2\)
=>\(BH=\dfrac{400}{29}a\)
2: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Xét ΔMAB có MA=MB
nên ΔMAB cân tại M
=>\(tanBAM=tanABM=tanABC=\dfrac{AC}{AB}=\dfrac{21}{20}\)
Câu 5:
1: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>BD\(\perp\)DA tại D
=>BD\(\perp\)AC tại D
Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE\(\perp\)EB tại E
=>AE\(\perp\)BC tại E
Xét ΔCAB có
AE,BD là các đường cao
AE cắt BD tại H
Do đó: H là trực tâm của ΔCAB
=>CH\(\perp\)AB
2:
Gọi giao điểm của CH với AB là K
=>CH\(\perp\)AB tại K
Ta có: ΔCDH vuông tại D
mà DF là đường trung tuyến
nên FH=FD=FC
\(\widehat{FDO}=\widehat{FDH}+\widehat{ODB}\)
\(=\widehat{OBD}+\widehat{FHD}\)
\(=\widehat{KHB}+\widehat{KBH}=90^0\)
=>FD\(\perp\)DO tại D
=>FD là tiếp tuyến của (O)