Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy tích cho tui đi
Nếu bạn tích tui
Tui không tích lại đâu
THANKS
\(2=\sqrt{4}>\sqrt{3}\)
\(6=\sqrt{36}< \sqrt{41}\)
\(7=\sqrt{49}>\sqrt{47}\)
cả hai bài đều giải bằng cách bình phương cả hai vế rồi so sánh
So sánh từng vế:
\(\sqrt{15}+1=4,872983346\)
\(\sqrt{24}=4,898979486\)
Vậy: \(\sqrt{15}+1< \sqrt{24}\)
\(\sqrt{2002}+\sqrt{2004}=89,50977321\)
\(2\sqrt{2005}=89,5545271\)
Vậy \(\sqrt{2002}+\sqrt{2004}< 2\sqrt{2005}\)
P/s: Ko chắc
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
a) 7 và \(\sqrt{37}+1\)
=7 và 7,08
=>......
b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)
=-3,95 và 9,95
=>.....
a,\(\left(\sqrt{6}-\sqrt{10}\right)\sqrt{4+\sqrt{15}}=\sqrt{6}.\sqrt{4-\sqrt{15}}-\sqrt{10}.\sqrt{4+\sqrt{15}}\)
=\(\sqrt{24+6\sqrt{15}}-\sqrt{40+10\sqrt{15}}=\sqrt{\left(\sqrt{15}+3\right)^2}-\sqrt{\left(\sqrt{15}+5\right)^2}\)
=\(\sqrt{15}+3-\sqrt{15}-5=-2\)
b,\(\left(\sqrt{3}+\sqrt{30}\right)\sqrt{10-\sqrt{41-4\sqrt{10}}}\)
=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{10-\sqrt{40-2\sqrt{40}+1}}\)
=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{10-\sqrt{\left(\sqrt{40}-1\right)^2}}\)
=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{10-\sqrt{40}+1}\)
=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{11-2\sqrt{10}}=\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{\left(\sqrt{10}-1\right)^2}\)
=\(\sqrt{3}\left(1+\sqrt{10}\right)\left(\sqrt{10}-1\right)=9\sqrt{3}\)
2,\(A=\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)-a-2}{\sqrt{a}+1}\right):\left(\frac{\sqrt{a}\left(1-\sqrt{a}\right)-\sqrt{a}+4}{1-a}\right)\)
\(A=\left(\frac{a+\sqrt{a}-a-2}{\sqrt{a}+1}\right):\left(\frac{\sqrt{a}-a-\sqrt{a}+4}{1-a}\right)=\left(\frac{\sqrt{a}+2}{\sqrt{a}+1}\right).\left(\frac{1-a}{4-a}\right)\)
\(A=\frac{\sqrt{a}-2}{\sqrt{a}+1}.\frac{a-1}{a-4}=\frac{\sqrt{a}-1}{\sqrt{a}+2}\)
b, ̣để \(A=\frac{1}{2}\Rightarrow\frac{\sqrt{a}-1}{\sqrt{a}+2}=\frac{1}{2}\Leftrightarrow2\sqrt{a}-2=\sqrt{a}+2\Leftrightarrow\sqrt{a}=4\Leftrightarrow a=16\left(t.m\right)\)
Bạn oi bài 2 hàng A thú 2 phải là \(\frac{\sqrt{a}-2}{\sqrt{a}+1}\) mình nhầm
Bài 1
a, 2+√5= √4+√5(vì 2=√4)=>(√4)²+(√5)²=4+5=9
5+√2 =√25+√2(vì 5=√25)=>(√25)²+(√2)²=25+2=27
Vì 9<27 =>2+√5 < 5+√2
b, (√15^30)²=15^30
(√9^41)²= 9^41
Vì 15^30 >9^41
=>√15^30>√9^41
Bài 2:
a, biến đổi vế trái. Ta được:
a-√a+1= (√a)²-2.√a.(1/2)+(1/2)²-(1/2)²+1
=(√a-1/2)²-1/4+1
=>a-√a+1= (√a-1/2)²+3/4(đpcm)
b, theo câu a, ta có a-√a+1= (√a-1/2)²+3/4
Vì (√a-1/2)²≥0
=> (√a-1/2)²+3/4≥ 3/4
Dấu'=' xảy ra khi √a-1/2=0=>a= 1/4
Vậy gtnn của A=3/4 tại a=1/4
Câu B mình nghĩ là
Vì a+√a≥0(vì √a luôn ≥ 0)
=> a+√a+1≥1
Dấu'=' xảy ra khi a+√a=0 =>a=0
Vậy gtnn của B là 1 tại a=0
a) Ta có : \(5>2\Rightarrow\sqrt{5}>\sqrt{2}\)
b) Vì \(8>5\Rightarrow\sqrt{8}>\sqrt{5}\Rightarrow2\sqrt{2}>5\)
c) VÌ \(-32>-45\Rightarrow-\sqrt{32}>-\sqrt{45}\Rightarrow-4\sqrt{2}>-\sqrt{5}\)
d) Vì \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Leftrightarrow2\sqrt{3}< 3\sqrt{2}\)
a) \(2^2=4\)
\(\sqrt{3^2}=3\)
\(4>3\Rightarrow\) \(2>\sqrt{3}\)
b) \(6^2=36\)
\(\sqrt{41^2}=41\)
\(36< 41\Rightarrow6< \sqrt{41}\)
Bài này: sao lại lớp 9 nhỉ; lớp 7 có rồi mà