Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong mp đáy, qua B kẻ đường thẳng song song AC, lần lượt cắt DA và DC kéo dài tại E và F
\(\Rightarrow AC||\left(SEF\right)\Rightarrow d\left(AC;SB\right)=d\left(AC;\left(SEF\right)\right)=d\left(A;\left(SEF\right)\right)\)
Gọi I là giao điểm AC và BD
Theo định lý Talet: \(\dfrac{ID}{IB}=\dfrac{DC}{AB}=3\Rightarrow\dfrac{ID}{BD}=\dfrac{3}{4}\)
Cũng theo Talet: \(\dfrac{DA}{DE}=\dfrac{DI}{DB}=\dfrac{3}{4}\Rightarrow AD=\dfrac{3}{4}DE\Rightarrow AE=\dfrac{1}{4}DE\)
\(\Rightarrow d\left(A;\left(SEF\right)\right)=\dfrac{1}{4}d\left(D;\left(SEF\right)\right)\)
Trong tam giác vuông EDF, kẻ \(DH\perp EF\) , trong tam giác vuông SDH, kẻ \(DK\perp SH\)
\(\Rightarrow DK\perp\left(SEF\right)\Rightarrow DK=d\left(D;\left(SEF\right)\right)\)
\(DE=\dfrac{4}{3}AD=\dfrac{4a}{3}\); \(DF=\dfrac{4}{3}DC=4a\)
\(\dfrac{1}{DH^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}=\dfrac{5}{8a^2}\)
\(\dfrac{1}{DK^2}=\dfrac{1}{SD^2}+\dfrac{1}{DH^2}=\dfrac{1}{48a^2}+\dfrac{5}{8a^2}\Rightarrow DK=\dfrac{4a\sqrt{93}}{31}\)
\(\Rightarrow d\left(AC;SB\right)=\dfrac{1}{4}DK=\dfrac{a\sqrt{93}}{31}\)
2.
\(cosx+cos3x=1+\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow2cos2x.cosx=1+cos2x+sin2x\)
\(\Leftrightarrow2cos2x.cosx=2cos^2x+2sinx.cosx\)
\(\Leftrightarrow cosx\left(cos2x-cosx-sinx\right)=0\)
\(\Leftrightarrow cosx\left(cos^2x-sin^2x-cosx-sinx\right)=0\)
\(\Leftrightarrow cosx\left(cosx+sinx\right)\left(cosx-sinx-1\right)=0\)
\(\Leftrightarrow cosx.\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right).\left[\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin\left(x+\dfrac{\pi}{4}\right)=0\\cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=-\dfrac{\pi}{4}+k\pi\\x+\dfrac{\pi}{4}=\pm\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=-\dfrac{\pi}{4}+k\pi\\x=k2\pi\end{matrix}\right.\)
a, \(u_n=u_1.q^{n-1}\)
\(\Leftrightarrow192=u_1.2^n\)
\(\Leftrightarrow u_1=\dfrac{192}{2^n}\)
\(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}\)
\(\Leftrightarrow189=\dfrac{\dfrac{192}{2^n}\left(1-2^n\right)}{1-2}\)
\(\Leftrightarrow189=192-\dfrac{192}{2^n}\)
\(\Leftrightarrow\dfrac{192}{2^n}=3\)
\(\Leftrightarrow2^n=2^6\)
\(\Rightarrow n=6\)
Gọi M là trung điểm BC, nối AO kéo dài cắt (O) tại D
Kẻ các đường cao BE, CF cắt nhau tại H
Ta có: \(\widehat{ABD}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow BD\perp AB\)
Lại có \(CF\perp AB\) (giả thiết)
\(\Rightarrow BD||CF\)
Hoàn toàn tương tự, ta có \(CD||BE\)
\(\Rightarrow\) Tứ giác BHCD là hình bình hành (2 cặp cạnh đối song song)
\(\Rightarrow\) Hai đường chéo BC và HD cắt nhau tại trung điểm các đường
Hay M cũng là trung điểm HD
Hay H đối xứng D qua M cố định
Mà tập hợp D là đường tròn (O) cố định
\(\Rightarrow\) Tập hợp H là ảnh của (O) qua phép đối xứng tâm M cố định
Vậy trực tâm của tam giác ABC nằm trên đường tròn cố định là ảnh của (O) qua phép đối xứng tâm M
Xin lỗi nha, bài lớp mấy vậy bn? Mk chưa học thông cảm nha, ko giúp đc òi, huhuhu...
Lớp 11 bạn t giải xong bài 3 rồi ai giải bài 4 đi