Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu vi của miếng đất như hình vẽ bằng với chu vi của hình chữ nhật có kích thước dưới đây:
Chiều dài của hình chữ nhật là: 7 + 6 = 13 (m)
Chiều rộng hình chữ nhật là: 5 + 2 = 7 (m)
Chu vi của mảnh đất như hình vẽ bằng:
(13 + 7) x 2 = 40 (m)
Chiều dài hàng rào là: 40 - 3 = 37 (m)
Kết luận:...
\(2\frac{x}{7}=\frac{75}{35}\)
\(\Rightarrow\frac{14+x}{7}=\frac{75}{35}\)
\(\Rightarrow x=1\)
gọi d là ƯCLN(9n+5;12n+7)
=>(9n+5)-(12n+7) chia hết cho d
=>4(9n+5)-3(12n+7) chia hết cho d
=>36n+20-36n-21 chia hết cho d
=>-1 chia hết cho d
=>ƯCLN(9n+5;12n+7)=-1
=>9n+5/12n+7 là phân số tối giản (đpcm)
B = 2 + 2² + 2³ + 2⁴ + ... + 2⁹⁹ + 2¹⁰⁰
= 2 + (2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷) + ... + (2⁹⁸ + 2⁹⁹ + 2¹⁰⁰)
= 2 + 2².(1 + 2 + 2²) + 2⁵.(1 + 2 + 2²) + ... + 2⁹⁸.(1 + 2 + 2²)
= 2 + 2².7 + 2⁵.7 + ... + 2⁹⁸.7
= 2 + 7.(2² + 2⁵ + ... + 2⁹⁸)
Ta có:
2 không chia hết cho 7
7.(2² + 2⁵ + ... + 2⁹⁸) ⋮ 7
Vậy B không chia hết cho 7
Dãy số B được tạo thành bằng cách cộng các lũy thừa của số 2 từ 2^1 đến 2^100. Ta có thể viết B như sau:
B = 2^1 + 2^2 + 2^3 + … + 2^99 + 2^100
Chúng ta có thể nhận thấy rằng mỗi số trong dãy B đều chia hết cho 2. Điều này có nghĩa là mỗi số trong dãy B đều có dạng 2^n, với n là một số nguyên không âm.
Nếu chúng ta xem xét các số trong dãy B theo modulo 7 (lấy phần dư khi chia cho 7), chúng ta sẽ thấy một chu kỳ lặp lại. Cụ thể, chu kỳ lặp lại này có độ dài là 6 và gồm các giá trị: 2, 4, 1, 2, 4, 1, …
Vì vậy, để tính tổng của dãy B, chúng ta có thể chia tổng số lũy thừa của 2 (tức là 100) cho 6, lấy phần dư và tìm giá trị tương ứng trong chu kỳ lặp lại. Trong trường hợp này, 100 chia cho 6 dư 4, vì vậy chúng ta sẽ lấy giá trị thứ 4 trong chu kỳ lặp lại, tức là 2.
Vậy, B khi chia cho 7 sẽ có phần dư là 2. Điều này có nghĩa là B không chia hết cho 7.
6:
Gọi thời gian làm riêng của đội 1 và đội 2 lần lượt là a,b
Trong 1 ngày, đội 1 làm được 1/a(công việc)
Trong 1 ngày, đội 2 làm được 1/b(công việc)
Theo đề, ta có:
1/a+1/b=1/15 và 3/a+5/b=1/4
=>a=24 và b=40
7:
Gọi thời gian chảy riêng đầy bể của vòi 1 và vòi 2 lần lượt là a,b
Theo đề, ta có hệ:
1/a+1/b=1/6 và 3/a+4/b=3/5
=>a=15 và b=10
1:
Độ dài cạnh còn lại là:
4/15:2/17=34/15(m)
Bài 2:
Thể tích nước trong bể chưa đầy chiếm:
1-2/5=3/5(bể)
Thời gian để bể đầy là:
3/5:1/5=3(giờ)
a : 5 dư 3
= > a - 3 chia hết cho 5
= > 2 (a - 3) chia hết cho 5
= > 2a - 6 + 5 chia hết cho 5
= > 2a - 1 chia hết cho 5, a chia 7 dư 4
= > a - 4 chia hết cho 7
= > 2(a - 4 ) chia hết cho 7
= > 2a - 8 + 7 chia hết cho 7
= > 2a -1 chia hết cho 7
a chia 11 dư 6
= > a - 6 chia hết cho 11
= > 2(a - 6) chia hết cho 11
= > 2a - 12 + 11 chia hết cho 11
= > 2a -1 chia hết cho 11
Vậy 2a - 1 thuộc BC(5;7;11)
Vì a nhỏ nhất nên 2a -1 nhỏ nhất
= > 2a - 1 = BC(5;7;11) = 5.7.11= 385
= > 2a - 1 =385
= > 2a = 386; a = 193
(mình nghĩ vậy)
a : 5 (dư 3) =>2a : 5 (dư 1) =>2a - 1 chia hết cho 5.
a : 7 (dư 4) =>2a : 7 (dư 1) =>2a - 1 chia hết cho 7.
a : 11 (dư 6) =>2a : 11 (dư 1) =>2a - 1 chia hết cho 11.
a nhỏ nhất => 2a nhỏ nhất => 2a - 1 nhó nhất.
=>2a - 1 thuộc BCNN(5,7,11) (1)
5 = 5
7 = 7
11 = 11
BCNN(5,7,11)= 5 . 7 . 11 = 385. (2)
Từ (1) và (2) => 2a - 1 = 385
2a = 385 + 1
2a = 386
a = 386 : 2
a = 193
Vậy,số tự nhiên a nhỏ nhất cần tìm là 193
Bài 3.4
a; \(\dfrac{36}{84}\) = \(\dfrac{42}{98}\)
\(\dfrac{36}{84}\) = \(\dfrac{36:12}{84:12}\) = \(\dfrac{3}{7}\)
\(\dfrac{42}{98}\) = \(\dfrac{42:14}{98:14}\) = \(\dfrac{3}{7}\)
Vậy \(\dfrac{36}{84}\) = \(\dfrac{42}{98}\) (đpcm)
b; \(\dfrac{123}{237}\) = \(\dfrac{123123}{237237}\)
\(\dfrac{123123}{237237}\) = \(\dfrac{123123:1001}{237237:1001}\) = \(\dfrac{123}{237}\) (đpcm)