Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\dfrac{a+b}{6}=\dfrac{b+c}{5}\\\dfrac{a+b}{6}=\dfrac{c+a}{7}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=\dfrac{a}{2}\\c=\dfrac{3a}{4}\end{matrix}\right.\)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\dfrac{a^2}{4}+\dfrac{9a^2}{16}-a^2}{2.\dfrac{a}{2}.\dfrac{3a}{4}}=-\dfrac{1}{4}\)
\(cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{a^2+\dfrac{9a^2}{16}-\dfrac{a^2}{4}}{2a.\dfrac{3a}{4}}=\dfrac{7}{8}\)
\(cosC=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{11}{16}\)
\(P=-\dfrac{1}{4}+\dfrac{14}{8}+\dfrac{44}{16}=\dfrac{17}{4}\)
Chọn B.
Ta có: góc A tù nên cos A < 0 ; sinA > 0 ; tan A < 0 ; cot A < 0
Do góc A tù nên góc B và C là các góc nhọn có các giá trị lượng giác đều dương
Do đó: M > 0 ; N > 0 ; P > 0 và Q < 0.
Giải giúp mình với ạ Giá trị nhỏ nhất của biểu thức P=x+4/x với x >0 là A 8 B 3 C 4 D 2
=>X=4 thay vào nha
\(cosA+cosB-cosC=2cos\frac{A+B}{2}.cos\frac{A-B}{2}+2sin^2\frac{C}{2}-1\)
\(=2sin\frac{C}{2}.cos\frac{A-B}{2}+2sin^2\frac{C}{2}-1\)
\(=2sin\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)-1\)
\(=2sin\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)-1\)
\(=4cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}-1\)
\(cosA+cosB+cosC=2cos\left(\dfrac{A+B}{2}\right)cos\left(\dfrac{A-B}{2}\right)+1-2sin^2\dfrac{C}{2}\)
\(=-2sin^2\dfrac{C}{2}+2sin\dfrac{C}{2}cos\left(\dfrac{A-B}{2}\right)+1\)
\(=-2\left[sin\dfrac{C}{2}-\dfrac{1}{2}cos\dfrac{A-B}{2}\right]^2-\dfrac{1}{2}sin^2\dfrac{A-B}{2}+\dfrac{3}{2}\le\dfrac{3}{2}\)