\(x+\dfrac{1}{y}< =1\). Tì...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2020

\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)

\(\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\)

\(\ge2\sqrt{2\sqrt{\frac{1}{16xy}\cdot xy}+\frac{15}{4\left(x+y\right)^2}}=2\sqrt{\frac{1}{2}+\frac{15}{4}}=\sqrt{17}\)

Dấu "=" xảy ra tai x=y=1/2

25 tháng 11 2016

Từ điều kiện bài toán ta có

\(\hept{\begin{cases}\frac{x}{y}\ge1\\x-y\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{y}\ge1\\x^2-2xy+y^2\ge0\end{cases}}\)

Thế vào ta được

\(P=\frac{2x^2+y^2-2xy}{xy}\ge\frac{x^2}{xy}=\frac{x}{y}\ge1\)

Dấu = xảy ra khi x = y

20 tháng 4 2020

Max=3,222222

17 tháng 6 2019

12. Ta có \(ab\le\frac{a^2+b^2}{2}\)

=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)

Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)

=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)

=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)

Khi đó 

\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)

Dấu bằng xảy ra khi a=b=c=1

Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1

17 tháng 6 2019

13.  Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)

=> \(1\ge\frac{9}{a+b+c+3}\)

=> \(a+b+c\ge6\)

Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)

Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)

Cộng 3 BT trên ta có

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)

Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)

=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)

Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)

<=> \(a^2+b^2\ge2ab\)(luôn đúng )

=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)

=> \(P\ge2\)

Vậy \(MinP=2\)khi a=b=c=2

Lưu ý : Chỗ .... là tương tự