Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có \(-\sqrt{x}=-2\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(\Rightarrow5x^2+7x=5.4^2+7.4=108\)
\(-\sqrt{x}=-2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)..\)
Thế vào biểu thức đã cho \(5x^2+7x\)ta được \(5.4^2+7.4=108\)
Vậy.....
2) Giả sử \(\sqrt{5}\)là số hữu tỉ \(\Rightarrow\sqrt{5}=\frac{a}{b}\left(a,b\in Z;\left(a,b\right)=1\right)\)
\(\Rightarrow\frac{a^2}{b^2}=5\Leftrightarrow a^2=5b^2\Rightarrow a^2⋮5\Rightarrow a⋮5\Rightarrow a^2⋮25\)
Mặt khác \(a^2=5b^2\Rightarrow5b^2⋮25\Leftrightarrow b^2⋮5\Rightarrow b⋮5\)
Như vậy a và b cùng chia hết cho 25 . Mà theo giả thiết \(\left(a,b\right)=1\)nên vô lí
Suy ra \(\sqrt{5}\)không phải là số hữu tỉ nên là số vô tỉ
a) \(\sqrt{x-1}=5\)
\(\Leftrightarrow x-1=25\)
\(\Rightarrow x=26\)
b)\(\sqrt{\left(x-\frac{1}{3}\right)^2}=7\)
\(\Leftrightarrow x-\frac{1}{3}=7\)
\(\Rightarrow x=\frac{22}{3}\)
c)\(\sqrt{x+1}+5=3\)
làm tương tự nha bạn
P/s tham khảo nha
a) \(\sqrt{x-1}=5\Leftrightarrow\left(\sqrt{x-1}\right)^2=5^2\)
\(\Leftrightarrow\sqrt{x-1}=25\)
\(\Leftrightarrow x=25+1=26\)
b) \(\sqrt{\left(x-\frac{1}{3}^2\right)}=7\). Đơn giản hóa phép tính:
\(\sqrt{\left(x-\frac{1}{3}\right)^2}\)với \(x-\frac{1}{3}\)
\(\Rightarrow x-\frac{1}{3}=7\)
\(x=7+\frac{1}{3}\Leftrightarrow x=\frac{22}{3}\)
c) \(\sqrt{1+x}+5=3\)
\(\sqrt{1-x}=3-5\)
\(\sqrt{1-x}=-2\)
\(\Leftrightarrow1+x=4\)
\(x=4-1=3\)
Mở rộng thêm:
When \(x=3\) the original equation \(\sqrt{1+x}+5=3\) does not hold true.
We will drop \(x=3\) from the solution set. (tự dịch nha! Vì mình sử dụng chương trình để trợ giúp mình giải
Giả sử \(\sqrt{3}\)không phải số vô tỉ.
Đặt \(\sqrt{3}=\frac{m}{n}\)( m , n là các số nguyên khác 0 ;\(\frac{m}{n}\)tối giản, hay \(ƯCLN\left(m;n\right)=1\))
\(\Rightarrow\left(\sqrt{3}\right)^2=\left(\frac{m}{n}\right)^2\)
\(\Rightarrow\frac{m^2}{n^2}=3\)
\(\Rightarrow m^2=3n^2\)
\(\Rightarrow m^2\text{⋮}3\)
\(\Rightarrow m\text{⋮}3\)
Đặt \(m=3k\)
\(\Rightarrow\left(3k\right)^2=3n^2\)
\(\Rightarrow3n^2=9k^2\)
\(\Rightarrow n^2=3k^2\)
\(\Rightarrow n^2\text{⋮}3\)
\(\Rightarrow n\text{⋮}3\)
Mà \(m\text{⋮}3\) nên \(ƯCLN\left(m;n\right)\ne1\), trái với điều kiện.
Vậy \(\sqrt{3}\)là số vô tỉ.
Tương tự với \(\sqrt{5}.\)
a) \(7-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}=7\)
\(\Rightarrow x=\left(\sqrt{7}\right)^2\)
b) \(5\sqrt{x}+1=40\)
\(\Rightarrow5\sqrt{x}=39\)
\(\Rightarrow\sqrt{x}=7,8\)
\(\Rightarrow x=\left(\sqrt{7,8}\right)^2\)
c) \(\dfrac{5}{12}\sqrt{x}-\dfrac{1}{6}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{5}{12}\sqrt{x}=\dfrac{1}{2}\)
\(\Rightarrow\sqrt{x}=1,2\)
\(\Rightarrow x=\left(\sqrt{1,2}\right)^2\)
d) \(4x^2-1=0\)
\(\Rightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\Rightarrow x=0,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)
e) \(\sqrt{x+1}-2=0\)
\(\Rightarrow\sqrt{x+1}=2\)
\(\Rightarrow x+1=1,414\)
\(\Rightarrow x=0,414\)
f) \(2x^2+0,82=1\)
\(\Rightarrow2x^2=0,18\)
\(\Rightarrow x^2=0,09\)
\(\Rightarrow x=\pm0,3\)
g) Không có kết quả