K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 3 2021

Gọi đường sinh là l, bán kính đáy R, chiều cao SO là h

Do thiết diện qua trục là tam giác vuông nên thiết diện là tam giác vuông cân

\(\Rightarrow SO=R\Rightarrow h=R\)

Áp dụng định lý cos: \(AB=\sqrt{OA^2+OB^2-2OA.OB.cos120^0}=R\sqrt{3}\)

Gọi H là trung điểm AB \(\Rightarrow OH\perp AB\) ; \(AH=\dfrac{AB}{2}=\dfrac{R\sqrt{3}}{2}\)

\(OH=\sqrt{OA^2-AH^2}=\dfrac{R}{2}\)

Kẻ \(OK\perp SH\Rightarrow OK\perp\left(SAB\right)\Rightarrow OK=d\left(O;\left(P\right)\right)\)

\(\dfrac{1}{SO^2}+\dfrac{1}{OH^2}=\dfrac{1}{OK^2}\Rightarrow\dfrac{1}{R^2}+\dfrac{4}{R^2}=\dfrac{5}{3a^2}\Rightarrow R=a\sqrt{3}\)

\(V=\dfrac{1}{3}\pi R^2h=\dfrac{1}{3}\pi R^3=\pi a^3\sqrt{3}\)

NV
9 tháng 11 2021

\(g'\left(x\right)=f'\left(x\right)-\left(m-1\right)=0\Rightarrow x^4-4x^2+1=m\)

Hàm có 4 cực trị khi y=m cắt \(y=x^4-4x^2+1\) tại 4 điểm pb

1 bài toán cơ bản. Vẽ BBT là xong. 

Mà có nhầm đâu ko nhỉ? Cảm giác bài này quá dễ so với bài vừa làm, kiểu 2 thế giới ấy

11 tháng 11 2021

dạ thầy nói chí phải :))))

NV
28 tháng 3 2021

Đặt \(log_2x=t\Rightarrow t\ge4\)

Phương trình trở thành: \(\sqrt{t^2-2t-3}=m\left(t-3\right)\)

\(\Leftrightarrow\sqrt{\left(t+1\right)\left(t-3\right)}=m\left(t-3\right)\)

\(\Leftrightarrow\sqrt{t+1}=m\sqrt{t-3}\)

\(\Leftrightarrow m=\sqrt{\dfrac{t+1}{t-3}}\)

Hàm \(f\left(t\right)=\sqrt{\dfrac{t+1}{t-3}}\) nghịch biến khi \(t\ge4\)

\(\lim\limits_{t\rightarrow+\infty}\sqrt{\dfrac{t+1}{t-3}}=1\) ; \(f\left(4\right)=\sqrt{5}\)

\(\Rightarrow1< f\left(t\right)\le\sqrt{5}\Rightarrow1< m\le\sqrt{5}\)

Đáp án D

1 tháng 3 2020

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web

2 tháng 8 2023

Để xác định vị trí của M để thể tích hình chóp S.A'B'C' đạt giá trị lớn nhất, ta sử dụng nguyên lý cơ sở của hình học không gian. Gọi H là trung điểm của đoạn thẳng BC. Ta có: - Đường thẳng A'H song song với đường thẳng BC. - Đường thẳng B'H song song với đường thẳng AC. - Đường thẳng C'H song song với đường thẳng AB. Do đó, ta có thể xem hình chóp S.A'B'C' là hình chóp đồng dạng với hình chóp S.ABC, tức là các cạnh của chúng có tỉ lệ tương ứng. Vì vậy, để thể tích hình chóp S.A'B'C' đạt giá trị lớn nhất, ta cần chọn M sao cho tỉ lệ giữa độ dài các đoạn thẳng SA', SB', SC' và độ dài các đoạn thẳng SA, SB, SC là nhỏ nhất. Đặt x = SA'/SA = SB'/SB = SC'/SC. Ta cần tìm giá trị của x để x đạt giá trị nhỏ nhất. Áp dụng định lí Thales, ta có: x = SA'/SA = S'A'/S'A = MA'/MA. Vì A'H song song với BC, ta có: MA'/MA = A'H/AH = A'C'/AC. Tương tự, ta có: MA'/MA = A'H/AH = A'B'/AB. Do đó, ta có: x = SA'/SA = SB'/SB = SC'/SC = A'C'/AC = A'B'/AB. Vậy, để x đạt giá trị nhỏ nhất, ta cần chọn M sao cho A'C'/AC = A'B'/AB đạt giá trị nhỏ nhất. Từ đó, ta suy ra M nằm trên đường thẳng A'H, với H là trung điểm của đoạn thẳng BC.

4 tháng 3 2019

 bằng 4 nha 

4 tháng 3 2019

1 + 1 + 1 + 1 =4

hok tốt

22 tháng 9 2017

Tui là SONE,not phải ARMY.

23 tháng 9 2017

Vậy bn là Taeganger,fan only của Đậu ú,Kid Leader.