Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(=\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
b.
\(=\left(x+1\right)\left(x+1\right)\left(x^2+x+1\right)\)
c.
\(1,\)
\(2x\left(x-3\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)
\(2,\)
\(3x\left(x+5\right)-6\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(3,\)
\(x^4-x^2=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(4,\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(5,\)
\(x\left(x+6\right)-10\left(x-6\right)=0\)
\(\Leftrightarrow x^2+6x-10x+60=0\)
\(\Leftrightarrow x^2-4x+60=0\)
\(\Leftrightarrow x^2-4x+4+56=0\)
\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)
=> Phương trình vô nghiệm
1. (-2x - 1)(x2 - x - 3) - (x + 2)(x + 1)2
= -2x3 + 2x2 + 6x - x2 + x + 3 - (x + 2)(x2 + 2x + 1)
= -2x3 + x2 + 7x + 3 - x3 - 2x2 - x - 2x2 - 2x - 2
= -3x3 - 3x2 + 4x + 1
2. (x + 2)(x - 1) - (x - 3)(x + 2) = 3
=> (x + 2)(x - 1 - x + 3) = 3
=> (x + 2).0 = 3
...(xem lại đề)
\(\left(x+2\right)\left(x-1\right)-\left(x-3\right)\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(x-1-x+3\right)=3\)
\(\Leftrightarrow2\left(x+2\right)=3\)
\(\Leftrightarrow x+2=\frac{3}{2}\)
\(\Leftrightarrow x=\frac{3}{2}-2\)
\(\Leftrightarrow x=-\frac{1}{2}\)
\(\Leftrightarrow2\left(x^2-2x+1\right)-\left(2x^2-2x+x-1\right)+6=0\\ \Leftrightarrow2x^2-4x+2-2x^2+x+1+6=0\\ \Leftrightarrow-3x=-9\Leftrightarrow x=3\)
\(\left(x-1\right)3+3x\left(x-1\right)=0\)
<=> \(3\left(x-1\right)\left(x+1\right)=0\)
<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy...
2(x+4)(x-3)=0
=> (x+4)(x-3)=0
TH1: x+4=0 => x=-4
TH2: x-3=0=> x=3
vậy pt có nghiệm là ; -4;3
b) (x-1)2(3x-1)=0
TH1: x-1=0 => x=1
TH2:3x-1=0=>3x=1=>x=1/3
vậy pt có nghiệm là: 1;1/3
c) (2x/3 + 4)(2x-3) (x/2-1)=0
=> TH1: 2x/3 +4=0 => 2x/3 =-4 => 2x=-12 => x=-6
TH2: 2x-3=0 => 2x=3=>x=3/2
TH3:x/2 -1 =0 => x/2=1 => x=2
vậy pt có nghiệm là : -6;3/2;2
a, 2(x+4)(x-3)=0
(x+4)(x+3)=0
x+4=0 hoặc x+3=0
x=-4 hoặc x=-3
b,(x-1)^2(3x-1)=0
x-1=0 hoặc 3x-1=0
x=1 hoặc x=1/3
c,(2x/3+4)(2x-3)(x/2-1)=0
2x/3+4=0 hoặc 2x-3=0 hoặc x/2-1=0
x=6 hoặc x=3/2 hoặc x=2
\(1,\left(3x+2\right)\left(5-x^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\5-x^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\-x^2=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=\pm\sqrt{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{2}{3};-\sqrt{5};\sqrt{5}\right\}\)
\(2,-2x-\dfrac{2}{3}\left(\dfrac{3}{4}-\dfrac{1}{8}x\right)=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow-2x-\dfrac{1}{2}+\dfrac{1}{12}x=-\dfrac{1}{8}\)
\(\Leftrightarrow-2x+\dfrac{1}{12}x=-\dfrac{1}{8}+\dfrac{1}{2}\)
\(\Leftrightarrow-\dfrac{23}{12}=\dfrac{3}{8}\)
\(\Leftrightarrow x=-\dfrac{9}{46}\)
Vậy \(S=\left\{-\dfrac{9}{46}\right\}\)
\(3,\dfrac{1}{12}:\dfrac{4}{21}=3\dfrac{1}{2}:\left(3x-2\right)\)
\(\Leftrightarrow\dfrac{1}{12}.\dfrac{21}{4}=\dfrac{7}{2}.\dfrac{1}{3x-2}\)
\(\Leftrightarrow\dfrac{7}{16}=\dfrac{7}{6x-4}\)
\(\Leftrightarrow6x-4=7:\dfrac{7}{16}\)
\(\Leftrightarrow6x-4=16\)
\(\Leftrightarrow x=\dfrac{10}{3}\)
Vậy \(S=\left\{\dfrac{10}{3}\right\}\)
\(4,\dfrac{x-1}{x+2}=\dfrac{4}{5}\left(dk:x\ne-2\right)\)
\(\Rightarrow5\left(x-1\right)=4\left(x+2\right)\)
\(\Rightarrow5x-5=4x+8\)
\(\Rightarrow x=13\left(tmdk\right)\)
Vậy \(S=\left\{13\right\}\)
f(x)g(x)=0<=>f(x)=0 hoặc g(x)=0
<=>(x2+x+1)2+x2+x-11=(x-1)(x+2)(x2+x+5) (=>vế phải có 3 TH)
TH1=>x=1
TH2=>x=-2
x2+x+5=0
12-4(1.5)=-19
=>pt ko có nghiệm thực
=>x=1 hoặc -2
đặt x^2+x+1=a
a^2+a-12=0 <=>(a-3)(a+4)=0
<=>a-3=0 hoặc a+4=0
Nếu a-3 =0 suy ra x^2+x-2=0 <=>(x+2)(x-1)=0 suy ra x=-2 hoặc x=1
Nếu a+4=0 thì x^2+x+5=0 vô nghiệm do x^2+x+1/4=(x+1/2)>=0