Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Với x > 0 ta có:
\(x+\dfrac{1}{x}\ge2\\ \Leftrightarrow\dfrac{x^2+1}{x}\ge\dfrac{2x}{x}\\ \Leftrightarrow x^2+1\ge2x\left(\text{vì }x>0\right)\\ \Leftrightarrow x^2-2x+1\ge0\\ \Leftrightarrow\left(x-1\right)^2\ge0\left(\text{luôn đúng }\forall x>0\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\). Vậy BĐT được chứng mình với x > 0.
1: Áp dụng Bđt cosi, ta được:
\(x+\dfrac{1}{x}\ge2\cdot\sqrt{x\cdot\dfrac{1}{x}}=2\)
1.
\(A+B+C=180^0\Rightarrow A=180^0-\left(B+C\right)=70^0\)
Kẻ đường cao BD
Trong tam giác vuông ABD:
\(cotA=\dfrac{AD}{BD}\Rightarrow AD=BD.cotA\)
Trong tam giác vuông BCD:
\(cotC=\dfrac{CD}{BD}\Rightarrow CD=BD.cotC\)
\(\Rightarrow AD+CD=BD.cotA+BD.cotC\)
\(\Rightarrow AC=BD.\left(cotA+cotC\right)\)
\(\Rightarrow BD=\dfrac{AC}{cotA+cotC}\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}BD.AC=\dfrac{1}{2}.\dfrac{AC^2}{cotA+cotC}=\dfrac{35^2}{2\left(cot70^0+cot50^0\right)}\approx509,1\left(cm^2\right)\)
Ta có : a + b + c = 3 - d
Theo bđt Bunhiacopxki : \(\left(3-d\right)^2=\left(a+b+c\right)^2=\left(1.a+1.b+1.c\right)^2\le\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\left(3-d\right)^2\le3\left(a^2+b^2+c^2\right)\)hay \(\left(3-d\right)^2\le3\left(3-d^2\right)\)(1)
Giải (1) :
\(d^2-6d+9\le-3d^2+9\Leftrightarrow4d^2-6d\le0\Leftrightarrow d\left(2d-3\right)\le0\)
TH1 : \(\begin{cases}d\le0\\2d-3\ge0\end{cases}\)\(\Leftrightarrow\left[\begin{array}{nghiempt}d\ge\frac{3}{2}\\d\le0\end{array}\right.\)
TH2 : \(\begin{cases}d\ge0\\2d-3\le0\end{cases}\)\(\Leftrightarrow0\le d\le\frac{3}{2}\)
So sánh hai trường hợp, ta được d đạt giá trị lớn nhất bằng \(\frac{3}{2}\) . Khi đó ta có : \(\begin{cases}a+b+c=\frac{3}{2}\\a^2+b^2+c^2=\frac{3}{4}\end{cases}\)\(\Leftrightarrow a=b=c=\frac{1}{2}\)
Vậy a = b = c = \(\frac{1}{2}\) thì d đạt giá trị lớn nhất bằng \(\frac{3}{2}\)
a) \(\Leftrightarrow A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)
b) \(\Leftrightarrow B=\sqrt{7-2\sqrt{12}}+\sqrt{12+2\sqrt{27}}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}=2-\sqrt{3}+3+\sqrt{3}=5\)
c) \(\Leftrightarrow C=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{6}{4}=\dfrac{3}{2}\)
d) \(\Leftrightarrow D=3-\left(-2\right)-5=0\)