Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(x^2\)+\(y^2\)+2y-6x+10=0
=> \(x^2\)-6x+9 +\(y^2\)+2y+1=0
=> (x-3)\(^2\)+(y+1)\(^2\)=0
pt vô nghiệm
4.
=> \(x^2\)+8x+16+(3y)\(^2\)-2.3.2y+4=0
=> (x+4)\(^2\)+(3y-2)\(^2\)=0
pt vô nghiệm
\(6x^2+x-15=0\Leftrightarrow6x^2+10x-9x-15=0\)
\(\Leftrightarrow2x\left(3x+5\right)-3\left(3x+5\right)=0\Leftrightarrow\left(2x-3\right)\left(3x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\3x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{5}{3}\end{cases}}\)
Tập nghiệm của phương trình là \(S=\left\{\frac{3}{2};-\frac{5}{3}\right\}\)
Tìm GTNN của A=\(x^4-6x^3+12x^2-12x+2021\)
Giúp mk vs ạ mk đang cần gấp ai nhanh mk sẽ vote cho ạ :<
\(Sửa:A=x^4-6x^3+13x^2-12x+2021\\ A=\left(x^4-6x^3+9x^2\right)+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x\right)^2+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x+2\right)^2+2017\ge2017\\ A_{min}=2017\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(E=-3x^2-6x+5\)
\(=-3\left(x^2+2x-\frac{5}{3}\right)\)
\(=-3\left(x^2+2x+1\right)+8\)
\(=-3\left(x+1\right)^2+8\le8\forall x\)
Dau '' = '' xay ra va chi \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
\(E=-3x^2-6x+5=-3\left(x^2+2x+1-1\right)+5\)
\(=-3\left(x+1\right)^2+8\le8\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN của E bằng 8 tại x = -1
\(3x\left(x-2\right)-x+2=0\)
\(\Leftrightarrow3x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)
\(B1:\)
\(3x\left(x-2\right)-\left(x-2\right)=0\)
\(\left(3x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)
Bài làm:
a) \(4x^2-7x+3=0\)
\(\Leftrightarrow\left(4x^2-4x\right)-\left(3x-3\right)=0\)
\(\Leftrightarrow4x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{4}\\x=1\end{cases}}\)
b) \(\left(4x^2-4\right)\left(x^2-x\right)=0\)
\(\Leftrightarrow4x\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)(Do viết PT lỗi nên bạn tự giải nha)
c) \(6x^2-4x-2=0\)
\(\Leftrightarrow\left(6x^2-6x\right)+\left(2x-2\right)=0\)
\(\Leftrightarrow6x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow2\left(3x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=1\end{cases}}\)
Sa
a) \(4x^2-7x+3=0\)
Dễ dàng nhận thấy a + b + c = 4 + ( -7 ) + 3 = 0
Vậy nên phương trình đã cho có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=1\\x_2=\frac{c}{a}=\frac{3}{4}\end{cases}}\)
Vậy \(S=\left\{1;\frac{3}{4}\right\}\)
b) \(\left(4x^2-4\right)\left(x^2-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x^2-4=0\\x^2-x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4\left(x^2-1\right)=0\\x\left(x-1\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\\x-1=0\Leftrightarrow x=1\\x=0\end{cases}}\)( chỗ này bạn thay bằng dấu hoặc nhé )
Vậy \(S=\left\{0;\pm1\right\}\)
c) \(6x^2-4x-2=0\)
Dễ dàng nhận thấy a + b + c = 6 + ( -4 ) + ( -2 ) = 0
Vậy nên phương trình đã cho có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=1\\x_2=\frac{c}{a}=\frac{-2}{6}=-\frac{1}{3}\end{cases}}\)
Vậy \(S=\left\{1;-\frac{1}{3}\right\}\)
<=> 32( \(x^2-\frac{3}{16}-\frac{13}{16}\)) = 0
<=> 32\(\left(x^2-x+\frac{13}{16}x-\frac{13}{16}\right)\)= 0
<=> 32[ x(x-1)+ 13/16( x- 1)] = 0
<=> 32( x-1) (x+13/16)= 0
<=> x-1=0 hoặc x+13/16= 0
<=> x= 1 hoặc x= -13/16
32x^2 - 6x - 26 = 0
<=> (x- 1) (x+\(\frac{13}{16}\)) = 0
<=> x= 1 hoặc x= \(\frac{-13}{16}\)
bài nay bn p dùng máy tính, ko thì ko lm đc đâu