K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

Không có GTLN đâu bạn ạ

15 tháng 9 2018

Bạn Đỗ Ngọc Hải nói đúng đấy

Rút gọn đc thôi :

\(C=1-\frac{8x-\frac{2}{3}}{2}\)

\(C=\frac{2}{2}-\frac{8x-\frac{2}{3}}{2}\)

\(C=\frac{2-8x+\frac{2}{3}}{2}\)

\(C=\frac{2\cdot\left(1-4x+\frac{1}{3}\right)}{2}\)

\(C=1-4x+\frac{1}{3}\)

đến đây ai biết làm ko giúp bạn ấy :))

16 tháng 9 2018

Lần sau viết đề cho dễ nhìn chút nhé! Viết vậy nhìn vô chả ai muốn giải đâu...=((( Mình cũng không chắc chắn là đúng...

a) \(A=3-\left|\frac{1}{3}-2x\right|\)

A lớn nhất khi \(\left|\frac{1}{3}-2x\right|\) bé nhất

Mà \(\left|\frac{1}{3}-2x\right|\ge0\forall x\in Q\)

Do đó \(A_{max}=3\Leftrightarrow\left|\frac{1}{3}-2x\right|=0\Leftrightarrow x=\frac{1}{6}\)

b) Nhìn không nổi đề bạn viết. Viết lại đề đi!!!!! Bạn viết kiểu đó ai mà muốn giải . Hay nói đúng hơn là không nhìn ra để giải...=((

c) \(C=\frac{1-\left|8x-\frac{2}{3}\right|}{2}\). Ta có

C lớn nhất khi \(1-\left|8x-\frac{2}{3}\right|\) lớn nhất. Mà \(1-\left|8x-\frac{2}{3}\right|\)lớn nhất khi \(\left|8x-\frac{2}{3}\right|\)bé nhất. 

Ta thấy: \(\left|8x-\frac{2}{3}\right|\ge0\forall x\in Q\)

Do đó \(1-\left|8x-\frac{2}{3}\right|\) lớn nhất bằng 1 

Thế vào đề bài ta có:  \(C_{max}=\frac{1}{2}\Leftrightarrow\text{​​}\left|8x-\frac{2}{3}\right|=0\Leftrightarrow x=\frac{1}{12}\)

17 tháng 9 2016

 A=5-3(2x+1)^2

Ta có : (2x+1)^2\(\ge\)0

\(\Rightarrow\)-3(2x-1)^2\(\le\)0

\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5

Dấu = xảy ra khi : (2x-1)^2=0

=> 2x-1=0 =>x=\(\frac{1}{2}\)

Vậy : A=5 tại x=\(\frac{1}{2}\)

Ta có : (x-1)^2 \(\ge\)0

=> 2(x-1)^2\(\ge\)0

=>2(x-1)^2+3 \(\ge\)3

=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)

Dấu = xảy ra khi : (x-1)^2 =0

=> x = 1

Vậy : B = \(\frac{1}{3}\)khi x = 1

\(\frac{x^2+8}{x^2+2}\)\(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)

Làm như câu B                   GTNN = 4 khi x =0 

k vs nha

30 tháng 1 2021

Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)

Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất

\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất

\(\Rightarrow\frac{5}{2x-3}\) lớn nhất

\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0

Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)

\(\Rightarrow2x\in\left\{4;8\right\}\)

\(\Rightarrow x\in\left\{2;4\right\}\)

Mà x nhỏ nhất và x > 0 nên x = 2

Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)

Vậy MaxA = 6 tại x = 2.

18 tháng 10 2016

De C co GTLN thi (x-6)^2+3 phai co GTNN ma (x-6)^2 > hoac =0

=> (x-6)^2+3 > 3 hoac =3

=> (x-6)^2+3=3 do (x-6)^2+3 phai co GTNN

=>(x-6)^2=0

x-6=0

x=0+6=6

Vay GTLN  cua C la 1/3

Dung ko vay ban

24 tháng 12 2018

Cho \(x=\frac{1}{4}\Rightarrow2.f\left(\frac{1}{\frac{1}{4}}\right)=\left(\frac{1}{4}\right)^2\)

\(\Rightarrow2f\left(4\right)=\frac{1}{16}\Rightarrow f\left(4\right)=\frac{1}{32}\)

9 tháng 4 2018

\(A=\left|x\right|-\left|x-2\right|\le\left|x-\left(x-2\right)\right|=\left|2\right|=2\)

Vậy GTNN củ A = 2 khi \(0\le x\le2\)

12 tháng 7 2018

1/ Câu hỏi của Jey - Toán lớp 7 - Học toán với OnlineMath

2/ \(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\Rightarrow ab\le\frac{36}{6}=6\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

Vậy abmax = 6 khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

3/ 

a, Để A đạt gtln <=> 17/13-x đạt gtln <=> 13-x đạt gtnn và 13-x > 0

=> 13-x = 1 => x = 12

Khi đó \(A=\frac{17}{13-12}=17\)

Vậy Amax = 17 khi x = 12

b, \(B=\frac{32-2x}{11-x}=\frac{22-2x+10}{11-x}=\frac{2\left(11-x\right)+10}{11-x}=2+\frac{10}{11-x}\)

Để B đạt gtln <=> \(\frac{10}{11-x}\) đạt gtln <=> 11-x đạt gtnn và 11-x > 0

=>11-x=1 => x=10

Khi đó \(B=\frac{10}{11-10}=10\)

Vậy Bmax = 10 khi x=10

13 tháng 7 2018

bạn trả lời đúng rùi