Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau viết đề cho dễ nhìn chút nhé! Viết vậy nhìn vô chả ai muốn giải đâu...=((( Mình cũng không chắc chắn là đúng...
a) \(A=3-\left|\frac{1}{3}-2x\right|\)
A lớn nhất khi \(\left|\frac{1}{3}-2x\right|\) bé nhất
Mà \(\left|\frac{1}{3}-2x\right|\ge0\forall x\in Q\)
Do đó \(A_{max}=3\Leftrightarrow\left|\frac{1}{3}-2x\right|=0\Leftrightarrow x=\frac{1}{6}\)
b) Nhìn không nổi đề bạn viết. Viết lại đề đi!!!!! Bạn viết kiểu đó ai mà muốn giải . Hay nói đúng hơn là không nhìn ra để giải...=((
c) \(C=\frac{1-\left|8x-\frac{2}{3}\right|}{2}\). Ta có
C lớn nhất khi \(1-\left|8x-\frac{2}{3}\right|\) lớn nhất. Mà \(1-\left|8x-\frac{2}{3}\right|\)lớn nhất khi \(\left|8x-\frac{2}{3}\right|\)bé nhất.
Ta thấy: \(\left|8x-\frac{2}{3}\right|\ge0\forall x\in Q\)
Do đó \(1-\left|8x-\frac{2}{3}\right|\) lớn nhất bằng 1
Thế vào đề bài ta có: \(C_{max}=\frac{1}{2}\Leftrightarrow\text{}\left|8x-\frac{2}{3}\right|=0\Leftrightarrow x=\frac{1}{12}\)
A=5-3(2x+1)^2
Ta có : (2x+1)^2\(\ge\)0
\(\Rightarrow\)-3(2x-1)^2\(\le\)0
\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5
Dấu = xảy ra khi : (2x-1)^2=0
=> 2x-1=0 =>x=\(\frac{1}{2}\)
Vậy : A=5 tại x=\(\frac{1}{2}\)
Ta có : (x-1)^2 \(\ge\)0
=> 2(x-1)^2\(\ge\)0
=>2(x-1)^2+3 \(\ge\)3
=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)
Dấu = xảy ra khi : (x-1)^2 =0
=> x = 1
Vậy : B = \(\frac{1}{3}\)khi x = 1
\(\frac{x^2+8}{x^2+2}\)= \(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Làm như câu B GTNN = 4 khi x =0
k vs nha
Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)
Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất
\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0
Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow2x\in\left\{4;8\right\}\)
\(\Rightarrow x\in\left\{2;4\right\}\)
Mà x nhỏ nhất và x > 0 nên x = 2
Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)
Vậy MaxA = 6 tại x = 2.
De C co GTLN thi (x-6)^2+3 phai co GTNN ma (x-6)^2 > hoac =0
=> (x-6)^2+3 > 3 hoac =3
=> (x-6)^2+3=3 do (x-6)^2+3 phai co GTNN
=>(x-6)^2=0
x-6=0
x=0+6=6
Vay GTLN cua C la 1/3
Dung ko vay ban
Cho \(x=\frac{1}{4}\Rightarrow2.f\left(\frac{1}{\frac{1}{4}}\right)=\left(\frac{1}{4}\right)^2\)
\(\Rightarrow2f\left(4\right)=\frac{1}{16}\Rightarrow f\left(4\right)=\frac{1}{32}\)
\(A=\left|x\right|-\left|x-2\right|\le\left|x-\left(x-2\right)\right|=\left|2\right|=2\)
Vậy GTNN củ A = 2 khi \(0\le x\le2\)
1/ Câu hỏi của Jey - Toán lớp 7 - Học toán với OnlineMath
2/ \(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\Rightarrow ab\le\frac{36}{6}=6\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)
Vậy abmax = 6 khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)
3/
a, Để A đạt gtln <=> 17/13-x đạt gtln <=> 13-x đạt gtnn và 13-x > 0
=> 13-x = 1 => x = 12
Khi đó \(A=\frac{17}{13-12}=17\)
Vậy Amax = 17 khi x = 12
b, \(B=\frac{32-2x}{11-x}=\frac{22-2x+10}{11-x}=\frac{2\left(11-x\right)+10}{11-x}=2+\frac{10}{11-x}\)
Để B đạt gtln <=> \(\frac{10}{11-x}\) đạt gtln <=> 11-x đạt gtnn và 11-x > 0
=>11-x=1 => x=10
Khi đó \(B=\frac{10}{11-10}=10\)
Vậy Bmax = 10 khi x=10
Không có GTLN đâu bạn ạ
Bạn Đỗ Ngọc Hải nói đúng đấy
Rút gọn đc thôi :
\(C=1-\frac{8x-\frac{2}{3}}{2}\)
\(C=\frac{2}{2}-\frac{8x-\frac{2}{3}}{2}\)
\(C=\frac{2-8x+\frac{2}{3}}{2}\)
\(C=\frac{2\cdot\left(1-4x+\frac{1}{3}\right)}{2}\)
\(C=1-4x+\frac{1}{3}\)
đến đây ai biết làm ko giúp bạn ấy :))