K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 1 2022

C là đáp án đúng

ĐKXĐ: \(x\ge2\)

\(\sqrt{x-2}\left(x^2-3x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\x^2-3x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3+\sqrt{17}}{2}\\x=\dfrac{3-\sqrt{17}}{2}< 2\left(loại\right)\end{matrix}\right.\)

NV
10 tháng 5 2021

b.

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 2\\x>\dfrac{9}{2}\end{matrix}\right.\\-\dfrac{1}{3}< x< 7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}< x< 2\\\dfrac{9}{2}< x< 7\end{matrix}\right.\)

Hay \(S=\left(-\dfrac{1}{3};2\right);\left(\dfrac{9}{2};7\right)\)

d.

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le-\dfrac{11}{5}\\x\ge7\end{matrix}\right.\\-\dfrac{1}{2}< x< 3\end{matrix}\right.\) \(\Rightarrow x\in\varnothing\) hay BPT vô nghiệm

6 tháng 1 2022

Kiểm tra à!?

Câu 43: A

Câu 44; B

Câu 12: C

Câu 14: C

Câu 15: A

6 tháng 1 2022

C

C

A

b: C=sin(x-pi/2+2pi)+sin(x+pi)+cos(pi/2-x)+cos(pi/2+x)

=sin(x-pi/2)+sin(x+pi)+sinx+cos(pi/2+x)

=-sin(pi/2-x)-sinx+sinx-sinx=-cosx-sinx

 

\(D=\dfrac{sin2x+2\cdot cos4x\cdot sinx}{cosx+cos4x}=\dfrac{2\cdot sinx\left(cosx+cos4x\right)}{cosx+cos4x}=2\cdot sinx\)

 

b: C=sin(x-pi/2+2pi)+sin(x+pi)+cos(pi/2-x)+cos(pi/2+x)

=sin(x-pi/2)+sin(x+pi)+sinx+cos(pi/2+x)

=-sin(pi/2-x)-sinx+sinx-sinx=-cosx-sinx

a: \(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-5;-4\right)\\\overrightarrow{AC}=\left(x_C-x_A;y_C-y_A\right)=\left(-1;-5\right)\end{matrix}\right.\)

Vì -5:(-1)<>(-4):(-5) nên A,B,C không thẳng hàng

hay ΔABC nhọn

a: \(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{2}=\dfrac{1-4+0}{2}=\dfrac{-3}{2}\\y_G=\dfrac{y_A+y_B+y_C}{2}=\dfrac{3-1-2}{2}=0\end{matrix}\right.\)

NV
1 tháng 4 2021

a. \(sinx+cosx=\dfrac{1}{5}\Rightarrow\left(sinx+cosx\right)^2=\dfrac{1}{25}\Rightarrow sin^2x+cos^2x+2sinx.cosx=\dfrac{1}{25}\)

\(\Rightarrow1+2sinx.cosx=\dfrac{1}{25}\Rightarrow sinx.cosx=-\dfrac{12}{25}\)

\(P=tanx+cotx=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}=\dfrac{1}{sinx.cosx}=\dfrac{1}{-\dfrac{12}{25}}=-\dfrac{25}{12}\)

b. \(\left(tana-cota\right)^2=\left(2\sqrt{3}\right)^2\Leftrightarrow\left(tana+cota\right)^2-4tana.cota=12\)

\(\Rightarrow\left(tana+cota\right)^2-4=12\Rightarrow\left(tana+cota\right)^2=16\)

\(\Rightarrow\left|tana+cota\right|=4\)