K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2021

Bài 1 

a, Xét tam giác ABC vuông tại A, đường cao AH 

Áp dụng định lí Pytago tam giác ABC vuông tại A 

\(BC^2=AB^2+AC^2=36+64=100\Rightarrow BC=10\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=x=\frac{AB^2}{BC}=\frac{36}{10}=\frac{18}{5}\)cm 

* Áp dụng hệ thức : \(AC^2=CH.BC\Rightarrow CH=y=\frac{AC^2}{BC}=\frac{64}{10}=\frac{32}{5}\)cm 

10 tháng 7 2021

tổng 1+2+3+..+có bao nhiêu số hạng đểkeets quả của tổng bằng 190

19 tháng 6 2021

\(5,A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(A=\left|2x-1\right|+\left|2x-3\right|\)

\(A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|\)

\(A\ge2\)

\(< =>MIN:A=2\)dấu = xảy khi \(\frac{1}{2}\le x\le\frac{3}{2}\)

15 tháng 3 2020

cần cái gì

10 tháng 4 2020

đề đau bạn?????

10 tháng 4 2020

Cho tui xin cái đề thì tui ms giúp đc chứ !!!

4 tháng 6 2021

idcm888dkk8cdw6ysgyxdbwdqjhqwuiowqqwudcgqofyhrli2uiy3yuyewiohewuwfwou

4 tháng 6 2021

xin lỗi, chưa học tới lớp 9

3 tháng 7 2021

\(7:a,\sqrt{2-x}=3\)

\(\left|2-x\right|=3^2=9\)

\(\orbr{\begin{cases}2-x=9\\2-x=-9\end{cases}\orbr{\begin{cases}x=-7\left(KTM\right)\\x=11\left(TM\right)\end{cases}}}\)

\(b,\sqrt{4-4x+x^2}=3\)

\(\sqrt{\left(2-x\right)^2}=3\)

\(\left|2-x\right|=3\)

\(\orbr{\begin{cases}2-x=3\\2-x=-3\end{cases}\orbr{\begin{cases}x=-1\left(TM\right)\\x=5\left(TM\right)\end{cases}}}\)

\(c,\sqrt{4+x^2}+x=3\)

\(\sqrt{4+x^2}=3-x\)

\(4+x^2=\left(3-x\right)^2\)

\(4+x^2=9-6x+x^2\)

\(x=\frac{5}{6}\left(TM\right)\)

\(d,\frac{1}{2}\sqrt{16x-32}-2\sqrt{4x-8}+\sqrt{9x-18}=5\)

\(2\sqrt{x-2}-4\sqrt{x-2}+3\sqrt{x-2}=5\)

\(\sqrt{x-2}\left(2-4+3\right)=5\)

\(\sqrt{x-2}=5\)

\(\left|x-2\right|=25\)

\(\orbr{\begin{cases}x-2=25\\x-2=-25\end{cases}\orbr{\begin{cases}x=27\left(TM\right)\\x=-23\left(KTM\right)\end{cases}}}\)

3 tháng 7 2021

thank

SUy ra 2 trường hợp  =>  từ 1 và 2 suy ra gì gì đó........

CHúc bạn hok tốt ;-;

31 tháng 10 2020

Áp dụng căn bậc hai,ta từ 1 có thể suy ra 2(2 ở đây là 2TH).Ví dụ:

\(1=\sqrt{1}=\hept{\begin{cases}-1\\1\end{cases}}\)

Còn nếu từ số một suy ra số 2 thì :

\(2-2+1\)

\(=2-\left(1+1\right)+\left(0,5+0,5\right)\)

\(=2-\left(1+\sqrt{1}\right)+\left(0,5+\sqrt{0,25}\right)\)

\(=2-\left(1+-1\right)+\left(0,5+-0,5\right)\)

\(=2-\left(1-1\right)+\left(0,5-0,5\right)\)

\(=2-0+0\)

\(=2\)

31 tháng 10 2020
https://scontent.fdad3-1.fna.fbcdn.net/v/t1.15752-9/123003016_851689625570003_1454037422538611142_n.png?_nc_cat=106&ccb=2&_nc_sid=ae9488&_nc_ohc=rJsrDeoCh0AAX90jt6i&_nc_ht=scontent.fdad3-1.fna&oh=a29b1a910354b1a229b1e921c07222d9&oe=5FC0F5FF
26 tháng 6 2021

14, \(\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\)

\(=\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}\)

\(=\frac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)+\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\left(3\sqrt{x}+14\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}+14}{5\sqrt{x}-1}\)

27 tháng 6 2021

thank