Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi: \(1h30'=1,5h\),
Tổng vận tốc của hai xe là:
\(150\div1,5=100\left(km/h\right)\)
Vận tốc xe tải là \(2\)phần thì vận tốc taxi là \(3\)phần.
Tổng số phần bằng nhau là:
\(2+3=5\)(phần)
Vận tốc taxi là:
\(100\div5\times3=60\left(km/h\right)\)
Vận tốc xe tải là:
\(100-60=40\left(km/h\right)\)
a) Vì tia Ot nằm giữa 2 tia Ox và Oy
\(\Rightarrow\) \(\widehat{xOt}+\widehat{yOt}=\widehat{xOy}\)
\(\Rightarrow\) 30o + 70o = \(\widehat{xOy}\)
\(\Rightarrow\) \(\widehat{xOy}\) = 100o
Vậy \(\widehat{xOy}\) = 100o
b) Vì tia Ot nằm giữa 2 tia Ox và Oy
\(\Rightarrow\) \(\widehat{xOt}+\widehat{yOt}=\widehat{xOy}\)
\(\Rightarrow\) \(\dfrac{1}{3}\widehat{yOt}+\widehat{yOt}=108^o\)
\(\Rightarrow\) \(\widehat{yOt}\left(\dfrac{1}{3}+1\right)\) = 108o
\(\Rightarrow\) \(\widehat{yOt}\dfrac{1}{4}\) = 108o
\(\Rightarrow\) \(\widehat{yOt}\)= 108o : \(\dfrac{4}{3}\) = 81o
\(\Rightarrow\) \(\widehat{xOt}\)= 81o : 3 = 27o
Vậy \(\widehat{yOt}\) = 81o và \(\widehat{xOt}\) = 27o
c) Vì tia Ot nằm giữa 2 tia Ox và Oy
\(\Rightarrow\) \(\widehat{yOt}+\widehat{xOt}=\widehat{xOy}\)
\(\Rightarrow\) \(\widehat{yOt}+\widehat{xOt}=80^o\)(1)
Theo bài ra, ta có: \(\widehat{yOt}-\widehat{xOt}=20^o\) (2)
Từ (1) và (2) suy ra:
\(\widehat{xOt}\) = (80o - 20o) : 2 = 30o
\(\Rightarrow\) \(\widehat{yOt}\) = 80o - 30o = 50o
Vậy \(\widehat{xOt}\) = 30o và \(\widehat{yOt}\) = 50o
c) Vì tia Ot nằm giưa 2 tia Ox và Oy
\(\Rightarrow\) \(\widehat{xOt}+\widehat{yOt}=\widehat{xOy}\)
\(\Rightarrow\) 50o + \(\widehat{yOt}\) = 100o
\(\Rightarrow\) \(\widehat{yOt}\) = 100o - 50o = 50o
Vậy \(\widehat{yOt}\) = 50o
d) Vì tia Ot nằm giữa 2 tia Ox và Oy
\(\Rightarrow\) \(\widehat{xOt}+\widehat{yOt}=\widehat{xOy}\)
\(\Rightarrow\) ao + bo = \(\widehat{xOy}\)
Vậy \(\widehat{xOy}\)= ao + bo (với 0 \(\le\) a,b \(\le\) 180)
B5
a)\(A=\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot\left(1-\dfrac{2010}{2010}\right)\left(1-\dfrac{2011}{2010}\right)\\ =\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot\left(1-1\right)\left(1-\dfrac{2011}{2010}\right)\\ =\left(1-\dfrac{1}{2010}\right)\left(1-\dfrac{2}{2010}\right)\left(1-\dfrac{3}{2010}\right)\cdot...\cdot0\cdot\left(1-\dfrac{2011}{2010}\right)\\ =0\)
b)
\(A=\dfrac{1946}{1986}=\dfrac{1986-40}{1986}=\dfrac{1986}{1986}-\dfrac{40}{1986}=1-\dfrac{40}{1986}\\ B=\dfrac{1968}{2008}=\dfrac{2008-40}{2008}=\dfrac{2008}{2008}-\dfrac{40}{2008}=1-\dfrac{40}{2008}\)
Vì \(\dfrac{40}{1986}>\dfrac{40}{2008}\) nên \(1-\dfrac{40}{1986}< 1-\dfrac{40}{2008}\) hay \(A< B\)
B6
a) Đề sai
Sửa lại:
\(B=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{28\cdot31}\\ =\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\\ =1-\dfrac{1}{31}\\ =\dfrac{30}{31}\)
b)
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)
Ta thấy:
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=\dfrac{1}{1}-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)
...
\(\dfrac{1}{8^2}< \dfrac{1}{7\cdot8}=\dfrac{1}{7}-\dfrac{1}{8}\)
\(\Rightarrow B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\\ B< 1-\dfrac{1}{8}\\ B< \dfrac{7}{8}\left(1\right)\)
Mà \(\dfrac{7}{8}< 1\left(2\right)\)
Từ (1) và (2) ta có \(B< 1\)
i) \(5\dfrac{8}{17}:x+\left(-\dfrac{4}{17}\right):x+3\dfrac{1}{7}:17\dfrac{1}{3}=\dfrac{4}{11}\)
\(\Rightarrow\dfrac{93}{17}:x-\dfrac{4}{17}:x+\dfrac{33}{182}=\dfrac{4}{11}\)
\(\Rightarrow\left(\dfrac{93}{17}-\dfrac{4}{17}\right):x=\dfrac{4}{11}-\dfrac{33}{182}\)
\(\Rightarrow\dfrac{89}{17}:x=\dfrac{365}{2002}\)
\(\Rightarrow x=\dfrac{89}{17}:\dfrac{365}{2002}=\dfrac{178178}{6205}\)
j) \(\dfrac{17}{2}-\left|2x-\dfrac{3}{4}\right|=-\dfrac{7}{4}\)
\(\Rightarrow\left|2x-\dfrac{3}{4}\right|=\dfrac{17}{2}-\left(-\dfrac{7}{4}\right)=\dfrac{41}{4}\)
\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{3}{4}=\dfrac{41}{4}\\2x-\dfrac{3}{4}=-\dfrac{41}{4}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}2x=11\Rightarrow x=\dfrac{11}{2}\\2x=-\dfrac{19}{2}\Rightarrow x=-\dfrac{19}{4}\end{matrix}\right.\)
k) \(\left(x+\dfrac{1}{5}\right)^2+\dfrac{17}{25}=\dfrac{26}{25}\)
\(\Rightarrow\left(x+\dfrac{1}{5}\right)^2=\dfrac{26}{25}-\dfrac{17}{25}=\dfrac{9}{25}=\left(\dfrac{3}{5}\right)^2\)\(=\left(-\dfrac{3}{5}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=\dfrac{3}{5}\Rightarrow x=\dfrac{2}{5}\\x+\dfrac{1}{5}=-\dfrac{3}{5}\Rightarrow x=-\dfrac{4}{5}\end{matrix}\right.\)
l) \(-1\dfrac{5}{27}-\left(3x-\dfrac{7}{9}\right)^3=-\dfrac{24}{27}\)
\(\Rightarrow\left(3x-\dfrac{7}{9}\right)^3=\dfrac{-32}{27}-\left(-\dfrac{24}{27}\right)=-\dfrac{8}{27}=\left(-\dfrac{2}{3}\right)^3\)
\(\Rightarrow3x-\dfrac{7}{9}=-\dfrac{2}{3}\)
\(\Rightarrow3x=-\dfrac{2}{3}+\dfrac{7}{9}=\dfrac{1}{9}\)
\(\Rightarrow x=\dfrac{1}{27}\)
j, \(\dfrac{17}{2}-\left|2x-\dfrac{3}{4}\right|=\dfrac{-7}{4}\)
\(\Rightarrow-\left|2x-\dfrac{3}{4}\right|=\dfrac{-7}{4}-\dfrac{17}{2}\)
\(\Rightarrow-\left|2x-\dfrac{3}{4}\right|=\dfrac{-41}{4}\)
\(\Rightarrow\left|2x-\dfrac{3}{4}\right|=\dfrac{41}{4}\)
\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{3}{4}=\dfrac{41}{4}\\2x-\dfrac{3}{4}=\dfrac{-41}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=\dfrac{-19}{4}\end{matrix}\right.\)
k, \(\left(x+\dfrac{1}{5}\right)^2+\dfrac{17}{25}=\dfrac{26}{25}\)
\(\Rightarrow\left(x+\dfrac{1}{5}\right)^2=\dfrac{9}{25}\)
\(\Rightarrow x+\dfrac{1}{5}=\pm\dfrac{3}{5}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=\dfrac{3}{5}\\x+\dfrac{1}{5}=\dfrac{-3}{5}\end{matrix}\right.\Rightarrow}\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=\dfrac{-4}{5}\end{matrix}\right.\)
l, \(-1\dfrac{5}{27}-\left(3x-\dfrac{7}{9}\right)^3=\dfrac{-24}{27}\)
\(\Rightarrow-\left(3x-\dfrac{7}{9}\right)^3=\dfrac{-19}{27}\)
\(\Rightarrow\left(3x-\dfrac{7}{9}\right)^3=\dfrac{19}{27}\)
\(\Rightarrow3x-\dfrac{7}{9}=\dfrac{\sqrt[3]{19}}{3}\)
\(\Rightarrow3x=\dfrac{\sqrt[3]{19}}{3}+\dfrac{7}{19}\)
\(\Rightarrow...\)
Ta có:
\(\overline{abc}=100.a+10.b+c=n^2-1\) (1)
\(\overline{cba}=100.c+b.10+a=n^2-4n+4\) (2)
Lấy (1) trừ (2) ta được:
\(99\left(a-c\right)=4n-5\)
\(\Rightarrow4n-5⋮99\)
Vì \(100\le\overline{abc}\le999\) nên:
\(100\le n^2-1\le999\)
\(\Rightarrow101\le n^2\le1000\)
\(\Rightarrow11\le31\Rightarrow39\le4n-5\le119\)
Vì \(4n-5⋮99\Rightarrow4n-5=99\Rightarrow n=26\Rightarrow\overline{abc}=675\)
Vậy \(\overline{abc}=675\)
Gọi số nhóm nhiều nhất lớp có thể chia được là x
Theo đề bài, ta có:
18⋮x; 24⋮x; x lớn nhất
⇒x=ƯCLN(18,24)
Ta có:
18=2x32
24=23x3
ƯCLN(18,24)=2x3=6
Hay x=6
Vậy số nhóm nhiều nhất lớp có thể chia được là 6 nhóm
Khi đó, mỗi nhóm sẽ có số bạn nam là: 18:6=3(bạn)
Khi đó, mỗi nhóm sẽ có số bạn nữ là: 24:6=4(bạn)
Đ/S:6 nhóm
3 bạn nam
4 bạn nữ
Gọi số nhóm nhiều nhất lớp có thể chia đc là x (nhóm)
18⋮x; 24⋮x; x lớn nhất
⇒x=ƯCLN(18,24)
Ta có:
18=2x32
24=23x3
ƯCLN(18,24)=2x3=6
Hay x=6
Vậy số nhóm nhiều nhất lớp có thể chia được là 6 nhóm
Khi đó, mỗi nhóm sẽ có số bạn nam là: 18:6=3(bạn)
Khi đó, mỗi nhóm sẽ có số bạn nữ là: 24:6=4(bạn)
Chúc bạn học tốt!