Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{90}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\right)\)
Đặt \(B=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\)
Ta có: \(\frac{1}{31}>\frac{1}{45}\)
\(\frac{1}{32}>\frac{1}{45}\)
....................
\(\frac{1}{45}=\frac{1}{45}\)
\(\Rightarrow B>\frac{1}{45}.15\)
\(\Rightarrow B>\frac{1}{3}\)
Đặt \(C=\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{46}>\frac{1}{90}\)
\(\frac{1}{47}>\frac{1}{90}\)
.....................
\(\frac{1}{90}=\frac{1}{90}\)
\(\Rightarrow C>\frac{1}{90}.45\)
\(\Rightarrow C>\frac{1}{2}\)
\(\Rightarrow B+C>\frac{1}{3}+\frac{1}{2}\)
Hay \(A>\frac{5}{6}\left(1\right)\)
Lại có: \(A=\left(\frac{1}{31}+...+\frac{1}{59}\right)+\left(\frac{1}{60}+...+\frac{1}{90}\right)\)
Đặt \(D=\frac{1}{31}+...+\frac{1}{59}\)
Ta có: \(\frac{1}{31}< \frac{1}{30}\)
. ...................
\(\frac{1}{59}< \frac{1}{30}\)
\(\Rightarrow D< \frac{1}{30}.60\)
\(\Rightarrow D< \frac{1}{2}\)
Đăt \(E=\frac{1}{60}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{60}=\frac{1}{60}\)
.................
\(\frac{1}{90}< \frac{1}{60}\)
\(\Rightarrow E< \frac{1}{60}.31\)
\(\Rightarrow E< \frac{31}{60}< 1\)
\(\Rightarrow E< 1\)
\(\Rightarrow E+D< 1+\frac{1}{2}\)
Hay \(A< \frac{3}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{5}{6}< A< \frac{3}{2}\)
\(xy+y+x=0\)
\(\Rightarrow y\left(x+1\right)+x+1=1\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=1\cdot1=\left(-1\right)\left(-1\right)\)
lập bảng
a,
\(\left(n+3\right)⋮\left(n-2\right)\\ \Rightarrow\left(n-2\right)+5⋮\left(n-2\right)\\ \Rightarrow5⋮\left(n-2\right)\\ \Rightarrow\left(n-2\right)\in\left\{{}\begin{matrix}5\\-5\\1\\-1\end{matrix}\right.\\ \Rightarrow n\in\left\{{}\begin{matrix}7\\-3\\4\\2\end{matrix}\right.\)
vì là số tự nhiên nên
\(n\in\left\{{}\begin{matrix}7\\4\\2\end{matrix}\right.\)
b,
\(\text{ ( 2n + 9 ) ⋮ ( n - 3 )}\\ \Rightarrow2\left(n-3\right)+15⋮\left(n-3\right)\\ \Rightarrow15⋮\left(n-3\right)\\ \Rightarrow\left(n-3\right)\inƯ\left(15\right)=\left\{15;5;3;1;-1;-3;-5;-15\right\}\\ \Rightarrow n\in\left\{18;8;6;4;2;0;-2;-13\right\}\)
vì n là số tự nhiên nên:
\(n\in\left\{18;8;6;4;2;0\right\}\)
Bạn tham khảo ở đây: Câu hỏi của nyuyen van binh - Toán lớp 6 - Học toán với OnlineMath
Ta có : \(A=\frac{2009.2009+2008}{2009.2009+2009}\)
\(=1-\frac{1}{2009.2009+2009}\)
\(B=\frac{2009.2009+2009}{2009.2009+2010}\)
\(=1-\frac{1}{2009.2009.2010}\)
Mà \(-\frac{1}{2009.2009+2009}< -\frac{1}{2009.2009.2010}\)
=> \(\frac{2009.2009+2008}{2009.2009+2009}< \frac{2009.2009+2009}{2009.2009.2010}\) => A < B
Câu nào bạn ơi
Sao mình không thấy
K thấy thì không thể làm giúp bạn được
Bạn viết lại đề cho đúng đi rồi nếu làm được mình sẽ giúp
Ai giúp mk với mk đag cần gấp lắm, ai nhanh và đúng mk tick cho. Cảm mơn nhìu
(-1/9)^2000.2^2000-4/3
(-1/9)^2000.2^2000-4/3=\(\frac{2^{2000}}{9^{2000}}-\frac{4}{3}\)=\(\frac{4^{1000}}{3^{4000}}-\frac{4.3^{3999}}{3^{4000}}\)=\(\frac{4.\left(4^{999}-3^{3999}\right)}{3^{4000}}\)
mik k chắc lám vì đb k rõ ràng
3n+19:n-1
=> n+n+n+19:n-1
=> (n-1)+(n-1)+(n-1)+22:n-1
=> 22:n-1
=> \(n-1\inƯ\left(22\right)\)
mà n > 2
\(\Rightarrow n\in\left\{2;11;22;-2;-11;-22\right\}\)